Generating DNA Code Words Using Forbidding and Enforcing Systems

  • Daniela Genova
  • Kalpana Mahalingam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)


Research in DNA computing was initiated by Leonard Adleman in 1994 when he solved an instance of an NP-complete problem solely by molecules. DNA code words arose in the attempt to avoid unwanted hybridizations of DNA strands for DNA based computations. Given a set of constraints, generating a large set of DNA strands that satisfy the constraints is an important problem in DNA computing. On the other hand, motivated by the non-determinism of molecular reactions, A. Ehrenfeucht and G. Rozenberg introduced forbidding and enforcing systems (fe-systems) as a model of computation that defines classes of languages based on two sets of constraints. We attempt to establish a connection between these two areas of research in natural computing by characterizing a variety of DNA codes that avoid certain types of cross hybridizations by fe-systems. We show that one fe-system can generate the entire class of DNA codes of a certain property, for example θ-k-codes, and confirm some properties of DNA codes through fe-systems. We generalize by fe-systems some known methods of generating good DNA code words which have been tested experimentally.


fe-systems fe-families Biomolecular computing Watson-Crick involution Hybridization DNA codes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Cavaliere, M., Jonoska, N.: Forbidding and enforcing in membrane computing. Natural Computing 2, 215–228 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Deaton, R., Murphy, R., Rose, J., Garzon, M., Franceschetti, D., Stevens Jr., S.: A DNA based implementation of an evolutionary search for good encodings for DNA computation. In: Proc. IEEE Conference on Evolutionary Computation ICEC 1997, pp. 267–271. Institute of Electrical and Electronics Engineers (1997)Google Scholar
  4. 4.
    Ehrenfeucht, A., Hoogeboom, H.J., Rozenberg, G., van Vugt, N.: Forbidding and enforcing. In: DNA Based Computers V, vol. 54, pp. 195–206. AMS DIMACS, Providence (2000)Google Scholar
  5. 5.
    Ehrenfeucht, A., Rozenberg, G.: Forbidding-enforcing systems. Theoretical Computer Science 292, 611–638 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solutions to chess problems. Proceedings of the National Academy of Sciences, USA 97(4), 1385–1389 (2000)CrossRefGoogle Scholar
  7. 7.
    Franco, G., Jonoska, N.: Forbidding and enforcing conditions in DNA self-assembly of graphs. In: Nanotechnology: Science and Computation. Natural Computing Series Part I, pp. 105–118 (2006)Google Scholar
  8. 8.
    Garzon, M.: On codeword design in metric spaces. Natural Computing 8(3), 571–588 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Genova, D.: Defining Languages by Forbidding-Enforcing Systems. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 92–101. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Genova, D.: Forbidding Sets and Normal Forms for Language Forbidding-Enforcing Systems. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 289–300. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Genova, D., Jonoska, N.: Topological properties of forbidding-enforcing systems. Journal of Automata, Languages and Combinatorics 11(4), 375–397 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Genova, D., Jonoska, N.: Forbidding and enforcing on graphs. Theoretical Computer Science 429, 108–117 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. Theoretical Computer Science 290, 1557–1579 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Jonoska, N., Mahalingam, K., Chen, J.: Involution codes: with application to DNA coded languages. Natural Computing 4, 141–162 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-free DNA languages. Acta Informatica 40, 119–157 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kari, L., Mahalingam, K.: DNA Codes and Their Properties. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 127–142. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Liu, Q., Wang, L., Frutos, A.G., Condon, A., Corn, R.M., Smith, L.M.: DNA computing on surfaces. Nature 403, 175–179 (2000)CrossRefGoogle Scholar
  18. 18.
    Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial word design. Preliminary Preproceedings of the 5th International Meeting on DNA Based Computers, Boston, pp. 75–88 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniela Genova
    • 1
  • Kalpana Mahalingam
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of North FloridaJacksonvilleUSA
  2. 2.Department of MathematicsIndian Institute of TechnologyChennaiIndia

Personalised recommendations