On the Security of Interferometric Quantum Key Distribution

  • Ran Gelles
  • Tal Mor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)


Photonic quantum key distribution (QKD) is commonly implemented using interferometers, devices that inherently cause the addition of vacuum ancillas, thus enlarging the quantum space in use. This enlargement sometimes exposes the implemented protocol to new kinds of attacks that have not yet been analyzed.

We consider several QKD implementations that use interferometers, and analyze the enlargement of the quantum space caused by the interferometers. While we show that some interferometric implementations are robust (against simple attacks), our main finding is that several other implementations used in QKD experiments are totally insecure.

This result is somewhat surprising since although we assume ideal devices and an underlying protocol which is proven secure (e.g., the Bennett-Brassard QKD), the realization is insecure. Our novel attack demonstrates the risks of using practical realizations without performing an extensive security analysis of the specific setup in use.


Quantum Key Distribution Security Implementation loopholes Quantum Cryptography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134(6B), B1410–B1416 (1964)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Physical Review A 41(1), 11–20 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The Universal Composable Security of Quantum Key Distribution. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 386–406. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Physical Review Letters 68(21), 3121–3124 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (December 1984)Google Scholar
  6. 6.
    Biham, E., Boyer, M., Boykin, P.O., Mor, T., Roychowdhury, V.P.: A proof of the security of quantum key distribution. J. Cryptology 19(4), 381–439 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Physical Review A 54(4), 2651–2658 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bonfrate, G., Harlow, M., Ford, C., Maxwell, G., Townsend, P.: Asymmetric mach-zehnder germano-silicate channel waveguide interferometers for quantum cryptography systems. Electronics Letters 37(13), 846–847 (2001)CrossRefGoogle Scholar
  9. 9.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum Key Distribution with Classical Bob. Physical Review Letters 99(14), 140501 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Physical Review A 79(3), 032341 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Boyer, M., Gelles, R., Mor, T.: Attacks on Fixed Apparatus Quantum Key Distribution Schemes. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) TPNC 2012. LNCS, pp. 97–107. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    Boykin, P.O., Roychowdhury, V.P.: Information vs. disturbance in dimension d. Quantum Info. Comput. 5(4), 396–412 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Physical Review Letters 85(6), 1330–1333 (2000)CrossRefGoogle Scholar
  14. 14.
    Bruß, D.: Optimal Eavesdropping in Quantum Cryptography with Six States. Physical Review Letters 81, 3018–3021 (1998)CrossRefGoogle Scholar
  15. 15.
    Dusek, M., Lütkenhaus, N., Hendrych, M.: Chapter 5 quantum cryptography. In: Wolf, E. (ed.) Progress in Optics, vol. 49, pp. 381–454. Elsevier (2006)Google Scholar
  16. 16.
    Elliott, C., Pearson, D., Troxel, G.: Quantum cryptography in practice. In: SIGCOMM 2003, pp. 227–238 (2003)Google Scholar
  17. 17.
    Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.S., Peres, A.: Optimal eavesdropping in quantum cryptography. i. information bound and optimal strategy. Physical Review A 56(2), 1163–1172 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fuchs, C.A., Peres, A.: Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. Physical Review A 53(4), 2038–2045 (1996)CrossRefGoogle Scholar
  19. 19.
    Gelles, R., Mor, T.: On the security of interferometric quantum key distribution (2011), (full version) arXiv:1110.6573Google Scholar
  20. 20.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Reviews of Modern Physics 74(1), 145–195 (2002)CrossRefGoogle Scholar
  21. 21.
    Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Applied Physics Letters 84(19), 3762–3764 (2004)CrossRefGoogle Scholar
  22. 22.
    Gottesman, D., Lo, H.-K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Information and Computation 5, 325–360 (2004)Google Scholar
  23. 23.
    Hughes, R.J., Luther, G.G., Morgan, G.L., Simmons, C.: Quantum cryptography over 14km of installed optical fiber. In: Rochester Conference on Coherence and Quantum Optics, pp. 7–10 (June 1995)Google Scholar
  24. 24.
    Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. European Physical Journal D 41, 599–627 (2007)CrossRefGoogle Scholar
  25. 25.
    Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Physical Review Letters 89(3), 037902 (2002)CrossRefGoogle Scholar
  26. 26.
    Jaeger, G., Sergienko, A.: Entangled states in quantum key distribution. In: AIP Conference Proceedings, vol. 810(1), pp. 161–167 (2006)Google Scholar
  27. 27.
    Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Physical Review A 61(5), 052304 (2000)CrossRefGoogle Scholar
  28. 28.
    Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. Journal of Modern Optics 52, 691–705 (2005)CrossRefGoogle Scholar
  29. 29.
    Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Physical Review A 74, 022313 (2006)CrossRefGoogle Scholar
  30. 30.
    Marøy, Ø., Lydersen, L., Skaar, J.: Security of quantum key distribution with arbitrary individual imperfections. Physical Review A 82, 032337 (2010)CrossRefGoogle Scholar
  31. 31.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)MathSciNetGoogle Scholar
  32. 32.
    Mayers, D., Yao, A.: Quantum cryptography with imperfect apparatus. In: FOCS 1998, p. 503 (1998)Google Scholar
  33. 33.
    Muller, A., Herzog, T., Huttner, B., Tittel, W., Zbinden, H., Gisin, N.: “Plug and play” systems for quantum cryptography. Applied Physics Letters 70(7), 793–795 (1997)CrossRefGoogle Scholar
  34. 34.
    Nambu, Y., Hatanaka, T., Nakamura, K.: Planar lightwave circuits for quantum cryptographic systems. Arxiv:quant-ph/0307074 (2003)Google Scholar
  35. 35.
    Nambu, Y., Hatanaka, T., Nakamura, K.: BB84 quantum key distribution system based on silica-based planar lightwave circuits. Japanese Journal of Applied Physics 43(8B), L1109–L1110 (2004)CrossRefGoogle Scholar
  36. 36.
    Nambu, Y., Yoshino, K., Tomita, A.: Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit. Journal of Modern Optics 55(12), 1953–1970 (2008)CrossRefGoogle Scholar
  37. 37.
    Nazarathy, M., Tselniker, I., Regev, Y., Orenstein, M., Katz, M.: Integrated-optical realizations of quantum key distribution over maximally unbiased bases. IEEE Journal of Selected Topics in Quantum Electronics 12(4), 897–913 (2006)CrossRefGoogle Scholar
  38. 38.
    Nazarathy, M.: Quantum key distribution over a fiber-optic channel by means of pulse position modulation. Opt. Lett. 30(12), 1533–1535 (2005)CrossRefGoogle Scholar
  39. 39.
    Renner, R.: Security of Quantum Key Distribution. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich (2005)Google Scholar
  40. 40.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters 85(2), 441–444 (2000)CrossRefGoogle Scholar
  41. 41.
    Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug&play system. New Journal of Physics 4, 41 (2002)CrossRefGoogle Scholar
  42. 42.
    Takesue, H., Diamanti, E., Honjo, T., Langrock, C., Fejer, M.M., Inoue, K., Yamamoto, Y.: Differential phase shift quantum key distribution experiment over 105km fibre. New Journal of Physics 7, 232 (2005)CrossRefGoogle Scholar
  43. 43.
    Takesue, H., Honjo, T., Kamada, H.: Differential phase shift quantum key distribution using 1.3-μm up-conversion detectors. Japanese Journal of Applied Physics 45, 5757 (2006)CrossRefGoogle Scholar
  44. 44.
    Townsend, P.D.: Secure key distribution system based on quantum cryptography. Electronics Letters 30, 809–811 (1994)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Waks, E., Takesue, H., Yamamoto, Y.: Security of differential-phase-shift quantum key distribution against individual attacks. Physical Review A (Atomic, Molecular, and Optical Physics) 73(1), 012344 (2006)CrossRefGoogle Scholar
  46. 46.
    Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Decoherence-free subspaces in quantum key distribution. Physical Review Letters 91(8), 087901 (2003)CrossRefGoogle Scholar
  47. 47.
    Yoshino, K., Fujiwara, M., Tanaka, A., Takahashi, S., Nambu, Y., Tomita, A., Miki, S., Yamashita, T., Wang, Z., Sasaki, M., Tajima, A.: High-speed wavelength-division multiplexing quantum key distribution system. Opt. Lett. 37(2), 223–225 (2012)CrossRefGoogle Scholar
  48. 48.
    Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Physical Review A 79(5), 052312 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ran Gelles
    • 1
  • Tal Mor
    • 2
  1. 1.Computer Science DepartmentUniversity of CaliforniaLos AngelesUSA
  2. 2.Computer Science DepartmentTechnionHaifaIsrael

Personalised recommendations