Skip to main content

Effective Medium Approximation Theory Description of Charge-Carrier Transport in Organic Field-Effect Transistors

  • Chapter
Small Organic Molecules on Surfaces

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 173))

  • 1499 Accesses

Abstract

In spite of a large amount of work having been done on the description of the charge-carrier transport in organic materials for last decades, the processes that determine charge transport in real organic electronic devices are still not completely understood, but their comprehension is definitely the key for designing materials with improved properties and, thereby, for a further increase in the performance of the devices. In this review, we will present an overview of the current achievements regarding theoretical description of the charge transport in disordered organic semiconductors with emphasis to charge transport behaviors at large carrier concentrations as realized in organic field-effect transistors (OFETs). A particular focus is given to the Effective Medium Approximation (EMA) analytical method, which was applied to describe the carrier-concentration-, electric-field- and temperature-dependent charge transport in organic materials that are used as active layers in OFET devices. In particular, we show that the establishment of the Meyer-Neldel rule (MNR) is a characteristic signature of hopping charge transport in a random system with variable carrier concentration irrespective of their polaronic character. The EMA model provides compact analytical relations which can be readily used for the evaluation of the energetic disorder parameter in organic semiconductor layers from experimentally accessible data on temperature dependent mobility in the OFET devices. The EMA theory is found to be in good agreement with previous computer simulations results and has been applied to describe recent experimental measurements of the temperature dependent electron mobility in a C60-based OFET for different carrier concentrations and different lateral (source-drain) electric fields. Finally, we compare our theory with alternative models suggested before to explain the MNR behavior for the charge transport in organic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Klauk, Organic Electronics: Materials, Manufacturing and Applications (Wiley/VCH, Weinheim, 2006)

    Book  Google Scholar 

  2. M. Berggren, D. Nilsson, N.D. Robinson, Nat. Mater. 6, 3–5 (2007)

    Article  CAS  Google Scholar 

  3. H. Bässler, Phys. Status Solidi, B Basic Res. 175, 15 (1993)

    Article  Google Scholar 

  4. P.M. Borsenberger, D.S. Weiss, Organic Photoreceptors for Xerography (Dekker, New York, 1998)

    Google Scholar 

  5. P.W.M. Blom, M.C.J.M. Vissenberg, Mater. Sci. Eng. 27, 53 (2000)

    Article  Google Scholar 

  6. V.I. Arkhipov, I.I. Fishchuk, A. Kadashchuk, H. Bässler, in Semiconducting Polymers: Chemistry, Physics and Engineering, ed. by G. Hadziioannou, G. Malliaras, 2nd edn. (Wiley/VCH, Weinheim, 2007)

    Google Scholar 

  7. C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. deLeeuw, Phys. Rev. Lett. 91, 216601 (2003)

    Article  CAS  Google Scholar 

  8. W.F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P.A. Bobbert, P.W.M. Blom, D.M. de Leeuw, M.A.J. Michels, Phys. Rev. Lett. 94, 206601 (2005)

    Article  CAS  Google Scholar 

  9. R. Coehoorn, W.F. Pasveer, P.A. Bobbert, M.A.J. Michels, Phys. Rev. B 72, 155206 (2005)

    Article  Google Scholar 

  10. V.I. Arkhipov, P. Heremans, E.V. Emelianova, G.J. Adriaenssens, H. Bässler, J. Phys. Condens. Matter 14, 9899–9911 (2002)

    Article  CAS  Google Scholar 

  11. I.I. Fishchuk, V.I. Arkhipov, A. Kadashchuk, P. Heremans, H. Bässler, Phys. Rev. B 76, 045210 (2007)

    Article  Google Scholar 

  12. I.I. Fishchuk, A.K. Kadashchuk, J. Genoe, M. Ullah, H. Sitter, T.B. Singh, N.S. Sariciftci, H. Bässler, Phys. Rev. B 81, 045202 (2010)

    Article  Google Scholar 

  13. N.I. Craciun, J. Wildeman, P.W.M. Blom, Phys. Rev. Lett. 100, 056601 (2008)

    Article  CAS  Google Scholar 

  14. I.I. Fishchuk, A. Kadashchuk, V.N. Poroshin, H. Bässler, Philos. Mag. 90, 1229 (2010)

    Article  CAS  Google Scholar 

  15. I.I. Fishchuk, A. Kadashchuk, M. Ullah, H. Sitter, A. Pivrikas, J. Genoe, H. Bässler, Phys. Rev. B 86, 045207 (2012)

    Article  Google Scholar 

  16. W. Warta, N. Karl, Phys. Rev. B 32, 1172 (1985)

    Article  CAS  Google Scholar 

  17. W. Warta, R. Stehle, N. Karl, Appl. Phys. A, Solids Surf. A 36, 163–170 (1985)

    Article  Google Scholar 

  18. Y.N. Gartstein, E.M. Conwell, Chem. Phys. Lett. 245, 351–358 (1995)

    Article  CAS  Google Scholar 

  19. S.V. Novikov, D.H. Dunlap, V.M. Kenkre, P.E. Parris, A.V. Vannikov, Phys. Rev. Lett. 81, 4472 (1998)

    Article  CAS  Google Scholar 

  20. M. Bouhassoune, S.L.M. van Mensfoort, P.A. Bobbert, R. Coehoorn, Org. Electron. 10, 437 (2009)

    Article  CAS  Google Scholar 

  21. S.V. Novikov, Phys. Status Solidi C 5, 740 (2008)

    Article  CAS  Google Scholar 

  22. E.J. Meijer, E.J. Meijer, M. Matters, P.T. Herwig, D.M. de Leeuw, T.M. Klapwijk, Appl. Phys. Lett. 76, 3433 (2000)

    Article  CAS  Google Scholar 

  23. E.J. Meijer Ph.D. thesis. Technical University of Delft (2003)

    Google Scholar 

  24. J. Paloheimo, H. Isotalo, Synth. Met. 55, 3185 (1993)

    Article  Google Scholar 

  25. W. Meyer, H. Neldel, Z. Tech. Phys. 18, 588 (1937)

    CAS  Google Scholar 

  26. S.D. Baranovskii, H. Cordes, F. Hensel, G. Leising, Phys. Rev. B 62, 7934 (2000)

    Article  CAS  Google Scholar 

  27. Y. Roichman, N. Tessler, Appl. Phys. Lett. 80, 1948 (2002)

    Article  CAS  Google Scholar 

  28. A. Miller, E. Abrahams, Phys. Rev. 120, 745 (1960)

    Article  CAS  Google Scholar 

  29. V.I. Arkhipov, P. Heremans, E.V. Emelianova, G.J. Adriaensses, H. Bässler, Appl. Phys. Lett. 82, 3245 (2003)

    Article  CAS  Google Scholar 

  30. V.I. Arkhipov, E.V. Emelianova, P. Heremans, H. Bässler, Phys. Rev. B 72, 235202 (2005)

    Article  Google Scholar 

  31. O. Rubel, S.D. Baranovskii, P. Thomas, S. Yamasaki, Phys. Rev. B 69, 0.14206 (2004)

    Article  Google Scholar 

  32. S.V. Rakhmanova, E.M. Conwell, Appl. Phys. Lett. 76, 3822 (2000)

    Article  CAS  Google Scholar 

  33. I.I. Fishchuk, D. Hertel, H. Bässler, A.K. Kadashchuk, Phys. Rev. B 65, 125201 (2002)

    Article  Google Scholar 

  34. P.E. Parris, D.H. Dunlap, V.M. Kenkre, Phys. Status Solidi, B 218, 47 (2000)

    Article  CAS  Google Scholar 

  35. J. Zhou, Y.C. Zhou, J.M. Zhou, C.Q. Wu, X.M. Ding, X.Y. Hou, Phys. Rev. B 75, 153201 (2007)

    Article  Google Scholar 

  36. A. Pivrikas, M. Ullah, H. Sitter, N.S. Sariciftci, Appl. Phys. Lett. 98, 092114 (2011)

    Article  Google Scholar 

  37. M. Ullah, A. Pivrikas, I.I. Fishchuk, A. Kadashchuk, P. Stadler, C. Simbrunner, N.S. Sariciftci, H. Sitter, Appl. Phys. Lett. 98, 223301 (2011)

    Article  Google Scholar 

  38. X. Li, A. Kadashchuk, I.I. Fishchuk, W.T.T. Smaal, G. Gelinck, D.J. Broer, J. Genoe, P. Heremans, H. Bässler, Phys. Rev. Lett. 108, 066601 (2012)

    Article  Google Scholar 

  39. L.C. Teague, B.H. Hamadani, O.D. Jurchescu, S. Subramanian, J.E. Anthony, T.N. Jackson, C.A. Richter, D.J. Gundlach, J.G. Kushmerick, Adv. Mater. 20, 4513–4516 (2008)

    Article  CAS  Google Scholar 

  40. G. Horowitz, M.E. Hajlaoui, R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000)

    Article  CAS  Google Scholar 

  41. L.G. Kaake, P.F. Barbara, X.-Y. Zhu, J. Phys. Chem. Lett. 1, 628–635 (2010)

    Article  CAS  Google Scholar 

  42. C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw, Org. Electron. 4, 33 (2003)

    Article  CAS  Google Scholar 

  43. A. Devos, M. Lannoo, Phys. Rev. B 58, 8236 (1998)

    Article  CAS  Google Scholar 

  44. E. Frankevich, Y. Maruyama, H. Ogata, Chem. Phys. Lett. 214, 39 (1993)

    Article  CAS  Google Scholar 

  45. D. Emin, Phys. Rev. B 46, 9419 (1992)

    Article  Google Scholar 

  46. A. Yelon, B. Movaghar, Phys. Rev. Lett. 65, 618 (1990)

    Article  Google Scholar 

  47. A. Yelon, B. Movaghar, R.S. Crandall, Rep. Prog. Phys. 69, 1145 (2006)

    Article  CAS  Google Scholar 

  48. D. Emin, Phys. Rev. Lett. 100, 166602 (2008)

    Article  Google Scholar 

  49. W.G. Gill, J. Appl. Phys. 43, 5033 (1972)

    Article  Google Scholar 

  50. M. Ullah, I.I. Fishchuk, A.K. Kadashchuk, P. Stadler, A. Pivrikas, C. Simbrunner, V.N. Poroshin, N.S. Sariciftci, H. Sitter, Appl. Phys. Lett. 96, 213306 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the ÖAD Project UA 10/2011, by the European Projects POLARIC (FP7-247978), by the State Agency on Science, Innovations and Informatization of Ukraine under the project No. M/283-2011, by the Science & Technology Center in Ukraine under the contract No. 5258, and by the NAS of Ukraine via the program of fundamental research on nanophysics (project No. 1/10-H-23K). The authors gratefully acknowledge valuable collaboration with Prof. N.S. Sariciftci, Prof. H. Sitter, Prof. J. Genoe, Prof. P. Heremans, and Prof. H. Bässler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Kadashchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fishchuk, I.I., Kadashchuk, A. (2013). Effective Medium Approximation Theory Description of Charge-Carrier Transport in Organic Field-Effect Transistors. In: Sitter, H., Draxl, C., Ramsey, M. (eds) Small Organic Molecules on Surfaces. Springer Series in Materials Science, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33848-9_7

Download citation

Publish with us

Policies and ethics