Skip to main content

In-situ Observation of Organic Thin Film Growth on Graphene

  • Chapter
Book cover Small Organic Molecules on Surfaces

Abstract

In-situ monitoring is highly convenient for obtaining profound insight into growth processes. In particular, real time imaging during film formation allows an unambiguous identification of growth modes such as Frank van der Merwe Layer-by-Layer, Stranski–Krastanov or Vollmer–Weber island growth. Here, we discuss the benefits of using Low Energy Electron Microscopy (LEEM) as a tool for the application relevant deposition of para-Sexiphenyl on graphene and Ir{111} substrates. Changes in the growth mode can be identified and interpreted with ease directly from the real time LEEM observations. Examples of all three principal growth modes will be discussed together with a state of the art structure determination. The presented system is a prime candidate for the possible fabrication of thin organic light emitting diodes. It combines an optically active organic semiconductor with the transparent, flexible, and conductive electrode material graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Γ-function is an extension of the factorial function to real and complex numbers. However, the argument is shifted down by 1. For positive integer values of n: Γ(n)=(n−1)!.

References

  1. G. Hlawacek, C. Teichert, A.Y. Andreev, H. Sitter, S. Berkebile, G. Koller, M. Ramsey, R. Resel, Self-organization of para-Sexiphenyl on crystalline substrates. Phys. Status Solidi A 202(12), 2376–2385 (2005). doi:10.1002/pssa.200521173. http://dx.doi.org/10.1002/pssa.200521173

    Article  CAS  Google Scholar 

  2. S. Berkebile, G. Koller, G. Hlawacek, C. Teichert, F.P. Netzer, M.G. Ramsey, Diffusion versus sticking anisotropy: anisotropic growth of organic molecular films. Surf. Sci. 600(24), 313–317 (2006). doi:10.1016/j.susc.2006.06.044

    Article  Google Scholar 

  3. G. Hlawacek, P. Puschnig, P. Frank, A. Winkler, C. Ambrosch-Draxl, C. Teichert, Characterization of step-edge barriers in organic thin-film growth. Science 321(5885), 108–111 (2008). doi:10.1126/science.1159455. http://dx.doi.org/10.1126/science.1159455

    Article  CAS  Google Scholar 

  4. J.E. Goose, E.L. First, P. Clancy, Nature of step-edge barriers for small organic molecules. Phys. Rev. B 81(20), 205310 (2010). doi:10.1103/PhysRevB.81.205310. http://dx.doi.org/10.1103/PhysRevB.81.205310

    Article  Google Scholar 

  5. X. Zhang, E. Barrena, D. Goswami, D.G. de Oteyza, C. Weis, H. Dosch, Evidence for a layer-dependent Ehrlich–Schwöbel barrier in organic thin film growth. Phys. Rev. Lett. 103(13), 136101 (2009). doi:10.1103/PhysRevLett.103.136101. http://dx.doi.org/10.1103/PhysRevLett.103.136101

    Article  Google Scholar 

  6. E. Bauer, Low energy electron microscopy. Rep. Prog. Phys. 57(9), 895 (1994). doi:10.1088/0034-4885/57/9/002. http://dx.doi.org/10.1088/0034-4885/57/9/002

    Article  CAS  Google Scholar 

  7. R.M. Tromp, J.B. Hannon, A.W. Ellis, W. Wan, A. Berghaus, O. Schaff, A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy 110(7), 852–861 (2010). doi:10.1016/j.ultramic.2010.03.005. http://dx.doi.org/10.1016/j.ultramic.2010.03.005

    Article  CAS  Google Scholar 

  8. E. Bauer, LEEM basics. Surf. Rev. Lett. 5(6), 1275–1286 (1998)

    Article  CAS  Google Scholar 

  9. M.J. Rost, L. Crama, P. Schakel, E. van Tol, G.B.E.M. van Velzen Williams, C.F. Overgauw, H.T. Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A.J. Katan, K. Schoots, R. Schumm, W. van Loo, T.H. Oosterkamp, J.W.M. Frenken, Scanning probe microscopes go video rate and beyond. Rev. Sci. Instrum. 76(5), 053710 (2005). doi:10.1063/1.1915288. http://dx.doi.org/10.1063/1.1915288

    Article  Google Scholar 

  10. F. Esch, C. Dri, A. Spessot, C. Africh, G. Cautero, D. Giuressi, R. Sergo, R. Tommasini, G. Comelli, The FAST module: an add-on unit for driving commercial scanning probe microscopes at video rate and beyond. Rev. Sci. Instrum. 82(5), 053702 (2011). doi:10.1063/1.3585984. http://dx.doi.org/10.1063/1.3585984

    Article  Google Scholar 

  11. Q. Li, Q. Lu, Atomic resolution ultrafast scanning tunneling microscope with scan rate breaking the resonant frequency of a quartz tuning fork resonator. Rev. Sci. Instrum. 82(5), 053705 (2011). doi:10.1063/1.3585200. http://dx.doi.org/10.1063/1.3585200

    Article  Google Scholar 

  12. W. Telieps, E. Bauer, An analytical reflection and emission UHV surface electron microscope. Ultramicroscopy 17(1), 57–65 (1985)

    Article  CAS  Google Scholar 

  13. U. Scheithauer, G. Meyer, M. Henzler, A new LEED instrument for quantitative spot profile analysis. Surf. Sci. 178(1–3), 441–451 (1986). doi:10.1016/0039-6028(86)90321-3. http://dx.doi.org/10.1016/0039-6028(86)90321-3

    Article  CAS  Google Scholar 

  14. L. Kilian, E. Umbach, M. Sokolowski, Molecular beam epitaxy of organic films investigated by high resolution low energy electron diffraction (SPA-LEED): 3,4,9,10-perylenetetracarboxylicacid-dianhydride (PTCDA) on Ag(111). Surf. Sci. 573(3), 359–378 (2004). doi:10.1016/j.susc.2004.10.004. http://dx.doi.org/10.1016/j.susc.2004.10.004

    Article  CAS  Google Scholar 

  15. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896. http://dx.doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  16. T.J. Echtermeyer, M.C. Lemme, M. Baus, B.N. Szafranek, A.K. Geim, H. Kurz, Nonvolatile switching in graphene field-effect devices. IEEE Electron Device Lett. 29(8), 952–954 (2008)

    Article  CAS  Google Scholar 

  17. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). doi:10.1038/nmat1849. http://dx.doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  18. Q.H. Wang, M.C. Hersam, Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem. 1(3), 206–211 (2009)

    Article  CAS  Google Scholar 

  19. P. Lauffer, K.V. Emtsev, R. Graupner, T. Seyller, L. Ley, Molecular and electronic structure of PTCDA on bilayer graphene on SiC(0001) studied with scanning tunneling microscopy. Phys. Status Solidi B 245(10), 2064–2067 (2008)

    Article  CAS  Google Scholar 

  20. I. Forbeaux, J.M. Themlin, J.M. Debever, Heteroepitaxial graphite on 6h−SiC(0001): interface formation through conduction-band electronic structure. Phys. Rev. B 58(24), 16396–16406 (1998). doi:10.1103/PhysRevB.58.16396. http://dx.doi.org/10.1103/PhysRevB.58.16396

    Article  CAS  Google Scholar 

  21. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006). doi:10.1126/science.1130681. http://dx.doi.org/10.1126/science.1130681

    Article  CAS  Google Scholar 

  22. J. Wintterlin, M.L. Bocquet, Graphene on metal surfaces. Surf. Sci. 603(10–12), 1841–1852 (2009). doi:10.1016/j.susc.2008.08.037. http://dx.doi.org/10.1016/j.susc.2008.08.037

    Article  CAS  Google Scholar 

  23. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008). doi:10.1021/nl801827v. http://dx.doi.org/10.1021/nl801827v

    Article  Google Scholar 

  24. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). doi:10.1126/science.1171245. http://dx.doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  25. A.T. N’Diaye, J. Coraux, T.N. Plasa, C. Busse, T. Michely, Structure of epitaxial graphene on Ir(111). New J. Phys. 10(4), 043033 (2008). doi:10.1088/1367-2630/10/4/043033. http://dx.doi.org/10.1088/1367-2630/10/4/043033

    Article  Google Scholar 

  26. I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A.T. N’Diaye, C. Busse, T. Michely, Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 102(5), 056808 (2009). doi:10.1103/PhysRevLett.102.056808. http://dx.doi.org/10.1103/PhysRevLett.102.056808

    Article  Google Scholar 

  27. R. van Gastel, A.T. N’Diaye, D. Wall, J. Coraux, C. Busse, N.M. Buckanie, F.J. Meyer zu Heringdorf, M. Horn von Hoegen, T. Michely, B. Poelsema, Selecting a single orientation for millimeter sized graphene sheets. Appl. Phys. Lett. 95(12), 121901 (2009). doi:10.1063/1.3225554. http://link.aip.org/link/?APL/95/121901/1

    Article  Google Scholar 

  28. H. Hattab, A.T. N’Diaye, D. Wall, G. Jnawali, J. Coraux, C. Busse, R. van Gastel, B. Poelsema, T. Michely, M. zu Heringdorf, M.H. von Hoegen, Growth temperature dependent graphene alignment on Ir(111). Appl. Phys. Lett. 98(14), 141903 (2011). doi:10.1063/1.3548546. http://dx.doi.org/10.1063/1.3548546

    Article  Google Scholar 

  29. J. Coraux, A.T. N’Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir(111). Nano Lett. 8(2), 565–570 (2008)

    Article  CAS  Google Scholar 

  30. S. Guha, W. Graupner, R. Resel, M. Chandrasekhar, H.R. Chandrasekhar, R. Glaser, G. Leising, Planarity of para-hexaphenyl. Phys. Rev. Lett. 82(18), 3625–3628 (1999)

    Article  CAS  Google Scholar 

  31. K. Baker, A. Fratini, T. Resch, H. Knachel, W. Adams, E. Socci, B. Farmer, Crystal structures, phase transitions and energy calculations of poly(p-phenylene) oligomers. Polymer 34(8), 1571–1587 (1993). doi:10.1016/0032-3861(93)90313-Y. http://dx.doi.org/10.1016/0032-3861(93)90313-Y

    Article  CAS  Google Scholar 

  32. F. Balzer, V.G. Bordo, A.C. Simonsen, H.G. Rubahn, Optical waveguiding in individual nanometer-scale organic fibers. Phys. Rev. B 67(11), 1154081 (2003)

    Article  Google Scholar 

  33. H. Plank, R. Resel, H. Sitter, A. Andreev, N.S. Sariciftci, G. Hlawacek, C. Teichert, A. Thierry, B. Lotz, Molecular alignments in sexiphenyl thin films epitaxially grown on muscovite. Thin Solid Films 443(1–2), 108–114 (2003). doi:10.1016/S0040-6090(03)01021-6. http://dx.doi.org/10.1016/S0040-6090(03)01021-6

    Article  CAS  Google Scholar 

  34. C. Teichert, G. Hlawacek, A.Y. Andreev, H. Sitter, P. Frank, A. Winkler, N.S. Sariciftci, Spontaneous rearrangement of para-Sexiphenyl crystallites into nano-fibers. Appl. Phys. A 82(4), 665–669 (2006). doi:10.1007/s00339-005-3450-7. http://dx.doi.org/10.1007/s00339-005-3450-7

    Article  CAS  Google Scholar 

  35. G. Hlawacek, F.S. Khokhar, R. van Gastel, B. Poelsema, C. Teichert, Smooth growth of organic semiconductor films on graphene for high-efficiency electronics. Nano Lett. 11(2), 333–337 (2011). doi:10.1021/nl103739n. http://dx.doi.org/10.1021/nl103739n

    Article  CAS  Google Scholar 

  36. A.T. N’Diaye, R. van Gastel, A.J. Martínez-Galera, J. Coraux, H. Hattab, D. Wall, F.J. Meyer zu Heringdorf, M. Horn von Hoegen, J.M. Gómez-Rodríguez, B. Poelsema, C. Busse, T. Michely, In situ observation of stress relaxation in epitaxial graphene. New J. Phys. 11(11), 113056 (2009). doi:10.1088/1367-2630/11/11/113056. http://dx.doi.org/10.1088/1367-2630/11/11/113056

    Article  Google Scholar 

  37. E. Loginova, S. Nie, K. Thürmer, N.C. Bartelt, K.F. McCarty, Defects of graphene on Ir(111): rotational domains and ridges. Phys. Rev. B 80(8), 085430 (2009)

    Article  Google Scholar 

  38. Z.H. Wang, K. Kanai, K. Iketaki, Y. Ouchi, K. Seki, Epitaxial growth of p-sexiphenyl film on highly oriented pyrolytic graphite surface studied by scanning tunneling microscopy. Thin Solid Films 516(9), 2711–2715 (2008)

    Article  CAS  Google Scholar 

  39. Y.-H. Zhang, K.-G. Zhou, K.-F. Xie, J. Zeng, H.-L. Zhang, Y. Peng, Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms. Nanotechnology 21(6), 065201 (2010). doi:10.1088/0957-4484/21/6/065201. http://dx.doi.org/10.1088/0957-4484/21/6/065201

    Article  Google Scholar 

  40. A.J. Fisher, P.E. Blöchl, Adsorption and scanning-tunneling-microscope imaging of benzene on graphite and $mos_2$. Phys. Rev. Lett. 70(21), 3263–3266 (1993). doi:10.1103/PhysRevLett.70.3263. http://dx.doi.org/10.1103/PhysRevLett.70.3263

    Article  CAS  Google Scholar 

  41. Avogadro, 2010. http://avogadro.openmolecules.net

  42. OBForceFieldGhemical, 2010. http://openbabel.org/wiki/OBForceFieldGhemical

  43. M. Clark, R.D. Cramer, N. Van Opdenbosch, Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 10(8), 982–1012 (1989). doi:10.1002/jcc.540100804. http://dx.doi.org/10.1002/jcc.540100804

    Article  CAS  Google Scholar 

  44. T. Hassinen, M. Peräkylä, New energy terms for reduced protein models implemented in an off-lattice force field. J. Comput. Chem. 22(12), 1229–1242 (2001). doi:10.1002/jcc.1080. http://dx.doi.org/10.1002/jcc.1080

    Article  CAS  Google Scholar 

  45. G. Hlawacek, F.S. Khokhar, R. van Gastel, C. Teichert, B. Poelsema, Diffusion and submonolayer growth of para-Sexiphenyl on Ir(111) and Ir(111)-supported graphene. IBM J. Res. Dev. 55(4), 15 (2011). doi:10.1147/JRD.2011.2160303. http://dx.doi.org/10.1147/JRD.2011.2160303

    Article  Google Scholar 

  46. F. Tournus, J.C. Charlier, Ab initio study of benzene adsorption on carbon nanotubes. Phys. Rev. B 71(16), 165421 (2005). doi:10.1103/PhysRevB.71.165421. http://dx.doi.org/10.1103/PhysRevB.71.165421

    Article  Google Scholar 

  47. M. Gsell, P. Jakob, D. Menzel, Effect of substrate strain on adsorption. Science 280(5364), 717–720 (1998)

    Article  CAS  Google Scholar 

  48. M. Schroeder, D.E. Wolf, Diffusion on strained surfaces. Surf. Sci. 375(1) (1997). doi:10.1016/S0039-6028(96)01250-2

  49. H. Brune, K. Bromann, H. Röder, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, J. Norskov, Effect of strain on surface diffusion and nucleation. Phys. Rev. B 52(20), 14380–14383 (1995)

    Article  Google Scholar 

  50. V.S. Stepanyuk, D.I. Bazhanov, W. Hergert, J. Kirschner, Strain and adatom motion on mesoscopic islands. Phys. Rev. B 63(15), 1534061 (2001)

    Article  Google Scholar 

  51. J. Tersoff, R.M. Tromp, Shape transition in growth of strained islands: spontaneous formation of quantum wires. Phys. Rev. Lett. 70(18), 2782–2785 (1993)

    Article  CAS  Google Scholar 

  52. H.J.W. Zandvliet, R. van Gastel, Bistability in the shape transition of strained islands. Phys. Rev. Lett. 99(13), 136103 (2007)

    Article  CAS  Google Scholar 

  53. K.R. Paserba, A.J. Gellman, Kinetics and energetics of oligomer desorption from surfaces. Phys. Rev. Lett. 86(19), 4338–4341 (2001). doi:10.1103/PhysRevLett.86.4338. http://dx.doi.org/10.1103/PhysRevLett.86.4338

    Article  CAS  Google Scholar 

  54. P. Frank, T. Djuric, M. Koini, I. Salzmann, R. Rieger, K. Müllen, R. Resel, N. Koch, A. Winkler, Layer growth, thermal stability, and desorption behavior of hexaaza-triphenylene-hexacarbonitrile on Ag(111). J. Phys. Chem. C 114(14), 6650–6657 (2010). doi:10.1021/jp100704v. http://dx.doi.org/10.1021/jp100704v

    Article  CAS  Google Scholar 

  55. S. Müllegger, A. Winkler, Hexaphenyl thin films on clean and carbon covered Au(111) studied with TDS and LEED. Surf. Sci. 600(6), 1290–1299 (2006). doi:10.1016/j.susc.2006.01.018. http://dx.doi.org/10.1016/j.susc.2006.01.018

    Article  Google Scholar 

  56. S.L. Tait, Z. Dohnálek, C.T. Campbell, B.D. Kay, n-alkanes on MgO(100). II. Chain length dependence of kinetic desorption parameters for small n-alkanes. J. Chem. Phys. 122(16), 164708 (2005). doi:10.1063/1.1883630. http://dx.doi.org/10.1063/1.1883630

    Article  Google Scholar 

  57. K.E. Becker, K.A. Fichthorn, Accelerated molecular dynamics simulation of the thermal desorption of n-alkanes from the basal plane of graphite. J. Chem. Phys. 125(18), 184706 (2006). doi:10.1063/1.2364894. http://dx.doi.org/10.1063/1.2364894

    Article  Google Scholar 

  58. K.A. Fichthorn, R.A. Miron, Thermal desorption of large molecules from solid surfaces. Phys. Rev. Lett. 89(19), 196103 (2002). doi:10.1103/PhysRevLett.89.196103. http://dx.doi.org/10.1103/PhysRevLett.89.196103

    Article  Google Scholar 

  59. K. Fichthorn, K. Becker, R. Miron, Molecular simulation of temperature-programmed desorption. Catal. Today 123(1–4), 71–76 (2007). doi:10.1016/j.cattod.2006.12.003. http://dx.doi.org/10.1016/j.cattod.2006.12.003

    Article  CAS  Google Scholar 

  60. T. Potocar, S. Lorbek, D. Nabok, Q. Shen, L. Tumbek, G. Hlawacek, P. Puschnig, C.A. Draxl, C. Teichert, A. Winkler, Initial stages of a para-hexaphenyl film growth on amorphous mica. Phys. Rev. B 83(7), 075423 (2011). doi:10.1103/PhysRevB.83.075423. http://dx.doi.org/10.1103/PhysRevB.83.075423

    Article  Google Scholar 

  61. M. Schunack, T.R. Linderoth, F. Rosei, E. Laegsgaard, I. Stensgaard, F. Besenbacher, Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett. 88(15), 156102 (2002). doi:10.1103/PhysRevLett.88.156102. http://dx.doi.org/10.1103/PhysRevLett.88.156102

    Article  CAS  Google Scholar 

  62. M. Henzler, LEED studies of surface imperfections. Appl. Surf. Sci. 11–12, 450–469 (1982). doi:10.1016/0378-5963(82)90092-7. http://dx.doi.org/10.1016/0378-5963(82)90092-7

    Google Scholar 

  63. M. Horn-von Hoegen, Growth of semiconductor layers studied by spot profile analysing low energy electron diffraction—Part II. Z. Kristallogr. 214(11), 684–721 (1999)

    Article  Google Scholar 

  64. M. Henzler, LEED-investigation of step arrays on cleaved germanium (111) surfaces. Surf. Sci. 19(1), 159–171 (1970)

    Article  CAS  Google Scholar 

  65. F.S. Khokhar, G. Hlawacek, R. van Gastel, H.J.W. Zandvliet, C. Teichert, B. Poelsema, The influence of substrate temperature on growth of para-Sexiphenyl thin films on Ir111 supported graphene studied by Leem. Surf. Sci. 606(3–4), 475–480 (2012). doi:10.1016/j.susc.2011.11.012. http://dx.doi.org/10.1016/j.susc.2011.11.012

    Article  CAS  Google Scholar 

  66. D.E. Hooks, T. Fritz, M.D. Ward, Epitaxy and molecular organization on solid substrates. Adv. Mater. 13(4), 227–241 (2001). doi:10.1002/1521-4095(200102)13:4%3C227::AID-ADMA227%3E3.0.CO;2-P. http://dx.doi.org/10.1002/1521-4095(200102)13:4%3C227::AID-ADMA227%3E3.0.CO;2-P

    Article  CAS  Google Scholar 

  67. G. Hlawacek, C. Teichert, S. Müllegger, R. Resel, A. Winkler, Pattern formation in para-quaterphenyl film growth on gold substrates. Synth. Met. 146(3), 383–386 (2004)

    Article  CAS  Google Scholar 

  68. F. Balzer, H.G. Rubahn, Chain-length dependent para-phenylene film- and needle-growth on dielectrics. Surf. Sci. 548(1–3), 170–182 (2004)

    Article  CAS  Google Scholar 

  69. G. Koller, S. Berkebile, J.R. Krenn, G. Tzvetkov, G. Hlawacek, O. Lengyel, F.P. Netzer, C. Teichert, R. Resel, M.G. Ramsey, Oriented sexiphenyl single crystal nanoneedles on TiO2 (110). Adv. Mater. 16(23–24), 2159–2162 (2004). doi:10.1002/adma.200400276. http://dx.doi.org/10.1002/adma.200400276

    Article  CAS  Google Scholar 

  70. S. Müllegger, G. Hlawacek, T. Haber, P. Frank, C. Teichert, R. Resel, A. Winkler, The influence of substrate temperature on the structure and morphology of sexiphenyl thin films on Au(111). Appl. Phys. A 87(1), 103–111 (2007). doi:10.1007/s00339-006-3845-0. http://dx.doi.org/10.1007/s00339-006-3845-0

    Article  Google Scholar 

  71. R. Resel, Crystallographic studies on hexaphenyl thin films — a review. Thin Solid Films 433, 1–11 (2003)

    Article  CAS  Google Scholar 

  72. A. Andreev, T. Haber, D.M. Smilgies, R. Resel, H. Sitter, N.S. Sariciftci, L. Valek, Morphology and growth kinetics of organic thin films deposited by hot wall epitaxy on KCl substrates. J. Cryst. Growth 275(1–2), 2037–2042 (2005)

    Article  Google Scholar 

  73. P.A. Mulheran, J.A. Blackman, Capture zones and scaling in homogeneous thin-film growth. Phys. Rev. B 53(15), 10261–10267 (1996). doi:10.1103/PhysRevB.53.10261. http://dx.doi.org/10.1103/PhysRevB.53.10261

    Article  CAS  Google Scholar 

  74. M. Brinkmann, S. Graff, F. Biscarini, Mechanism of nonrandom pattern formation of polar-conjugated molecules in a partial wetting regime. Phys. Rev. B 66(16), 165430 (2002). doi:10.1103/PhysRevB.66.165430. http://dx.doi.org/10.1103/PhysRevB.66.165430

    Article  Google Scholar 

  75. A. Pimpinelli, T.L. Einstein, Capture-zone scaling in island nucleation: universal fluctuation behavior. Phys. Rev. Lett. 99(22), 226102 (2007)

    Article  Google Scholar 

  76. A. Pimpinelli, T.L. Einstein, Pimpinelli and Einstein reply:. Phys. Rev. Lett. 104(14), 149602 (2010). doi:10.1103/PhysRevLett.104.149602. http://dx.doi.org/10.1103/PhysRevLett.104.149602

    Article  Google Scholar 

  77. D.D. Chambliss, K.E. Johnson, Nucleation with a critical cluster size of zero: submonolayer Fe inclusions in Cu(100). Phys. Rev. B 50(7), 5012–5015 (1994). doi:10.1103/PhysRevB.50.5012. http://dx.doi.org/10.1103/PhysRevB.50.5012

    Article  CAS  Google Scholar 

  78. G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, G. Comsa, Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: a model study for surfactant-mediated growth. Phys. Rev. Lett. 71(6), 895–898 (1993). doi:10.1103/PhysRevLett.71.895. http://dx.doi.org/10.1103/PhysRevLett.71.895

    Article  CAS  Google Scholar 

  79. G. Haas, A. Menck, H. Brune, J.V. Barth, J.A. Venables, K. Kern, Nucleation and growth of supported clusters at defect sites: Pd/MgO(001). Phys. Rev. B 61(16), 11105–11108 (2000). doi:10.1103/PhysRevB.61.11105. http://dx.doi.org/10.1103/PhysRevB.61.11105

    Article  CAS  Google Scholar 

  80. B. Winter, J. Ivanco, F.P. Netzer, M.G. Ramsey, Ordered mono- and multilayer films of sexiphenyl on Al(111): a LEED investigation. Thin Solid Films 433(1–2), 269–273 (2003)

    Article  CAS  Google Scholar 

  81. H. Oji, E. Ito, M. Furuta, K. Kajikawa, H. Ishii, Y. Ouchi, K. Seki, p-Sexiphenyl/metal interfaces studied by photoemission and metastable atom electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 101–103, 517–521 (1999). doi:10.1016/S0368-2048(98)00485-X. http://dx.doi.org/10.1016/S0368-2048(98)00485-X

    Article  Google Scholar 

  82. S. Müllegger, A. Winkler, The influence of carbon on the adsorption/desorption kinetics and monolayer formation of quaterphenyl on Au(111). Surf. Sci. 574(2–3), 322–330 (2005). doi:10.1016/j.susc.2004.10.044. http://dx.doi.org/10.1016/j.susc.2004.10.044

    Article  Google Scholar 

  83. P. Frank, G. Hlawacek, O. Lengyel, A. Satka, C. Teichert, R. Resel, A. Winkler, Influence of surface temperature and surface modifications on the initial layer growth of para-hexaphenyl on mica (0 0 1). Surf. Sci. 601(10), 2152–2160 (2007)

    Article  CAS  Google Scholar 

  84. L. Tsetseris, S.T. Pantelides, Atomic-scale mechanisms of selective adsorption and dimerization of pentacene on Si surfaces. Appl. Phys. Lett. 87(23), 233109 (2005). doi:10.1063/1.2139989. http://link.aip.org/link/?APL/87/233109/1

    Article  Google Scholar 

  85. F. Schertz, D. Kutnyakhov, S. Schuppler, P. Nagel, S. Nepijko, G. Schönhense, Measurement of object height in emission electron microscopy. Appl. Phys. A 102(2), 253–258 (2011). doi:10.1007/s00339-010-5998-0. http://dx.doi.org/10.1007/s00339-010-5998-0

    Article  CAS  Google Scholar 

  86. R. Resel, M. Oehzelt, O. Lengyel, T. Haber, T. Schulli, A. Thierry, G. Hlawacek, C. Teichert, S. Berkebile, G. Koller, The epitaxial sexiphenyl (001) monolayer on TiO2(110): a grazing incidence X-ray diffraction study. Surf. Sci. 600(19), 4645–4649 (2006). doi:10.1016/j.susc.2006.07.021. http://dx.doi.org/10.1016/j.susc.2006.07.021

    Article  CAS  Google Scholar 

  87. L. Sun, S. Berkebile, G. Weidlinger, G. Koller, M. Hohage, F.P. Netzer, M.G. Ramsey, P. Zeppenfeld, Revealing the buried interface: para-Sexiphenyl thin films grown on TiO2(110). Phys. Chem. Chem. Phys. 12(13), 3141–3144 (2010). doi:10.1039/b922285e. http://dx.doi.org/10.1039/b922285e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Hlawacek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hlawacek, G., Khokhar, F.S., van Gastel, R., Zandvliet, H.J.W., Poelsema, B., Teichert, C. (2013). In-situ Observation of Organic Thin Film Growth on Graphene. In: Sitter, H., Draxl, C., Ramsey, M. (eds) Small Organic Molecules on Surfaces. Springer Series in Materials Science, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33848-9_5

Download citation

Publish with us

Policies and ethics