Skip to main content

The Structure of Molecular Orbitals Investigated by Angle-Resolved Photoemission

  • Chapter
Small Organic Molecules on Surfaces

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 173))

Abstract

In this contribution, it is shown how the combination of angle-resolved photoemission spectroscopy (ARPES) with ab-initio electronic-structure calculations within the framework of density-functional theory (DFT) leads to insights into electronic and structural properties of organic molecular layers well beyond conventional density-of-sates or E(k) investigations. In particular, we emphasize the rather simple, but for many cases sufficiently accurate, connection between the observed angular dependence of the photocurrent with the spatial distribution of the molecular orbital from which it is arising. After discussing the accuracy and limitations of this approach, which is based on a plane-wave approximation of the final state, three examples are presented. The first utilizes the characteristic angular pattern of the highest occupied molecular orbitals (HOMO) in a pentacene multilayer film in order to measure the molecular tilt angle in the film. In the second example, the nature of two closely spaced molecular emissions from a porphyrin thin film is unambiguously identified as HOMO and HOMO-1, and the molecule’s azimuthal alignment is determined. Finally, for a monolayer of para-sexiphenyl on Cu(110), it is demonstrated how the real-space distribution of the filled LUMO and the HOMO of para-sexiphenyl can be reconstructed from the angular dependence of the photocurrent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the intensity maxima close to the substrate’s [001] direction are due to a measurement artifact, i.e., a reflection of the primary photon beam into the detector.

References

  1. N. Ueno, S. Kera, Prog. Surf. Sci. 83, 490 (2008)

    Article  CAS  Google Scholar 

  2. J. Repp, G. Meyer, S.M. Stojkovic, A. Gourdon, C. Joachim, Phys. Rev. Lett. 94, 026803 (2005)

    Article  Google Scholar 

  3. A. Kraft, R. Temirov, S.K.M. Henze, S. Soubatch, M. Rohlfing, F.S. Tautz, Phys. Rev. B 74, 041402(R) (2006)

    Article  Google Scholar 

  4. R. Temirov, S. Soubatch, A. Luican, F.S. Tautz, Nature 444, 350 (2006). doi:10.1038/nature05270

    Article  CAS  Google Scholar 

  5. J. Kröger, H. Jensen, R. Berndt, R. Rurali, N. Lorente, Chem. Phys. Lett. 438, 249 (2007)

    Article  Google Scholar 

  6. I. Torrente, K. Franke, J. Pascual, J. Phys. Condens. Matter 20, 184001 (2008)

    Article  Google Scholar 

  7. S. Soubatch, C. Weiss, R. Temirov, F. Tautz, Phys. Rev. Lett. 102, 177405 (2009)

    Article  CAS  Google Scholar 

  8. W.H.E. Schwarz, Angew. Chem., Int. Ed. Engl. 45, 1508 (2006). doi:10.1002/anie.200501333

    Article  CAS  Google Scholar 

  9. R. Temirov, S. Soubatch, O. Neucheva, A.C. Lassise, F.S. Tautz, New J. Phys. 10, 053012 (2008). doi:10.1088/1367-2630/10/5/053012

    Article  Google Scholar 

  10. S. Hüfner, Photoelectron Spectroscopy (Springer, Berlin, 2003)

    Book  Google Scholar 

  11. S. Kera, S. Tanaka, H. Yamane, D. Yoshimura, K. Okudaira, K. Seki, N. Ueno, Chem. Phys. 325, 113 (2006). doi:10.1016/j.chemphys.2005.10.023

    Article  CAS  Google Scholar 

  12. P. Puschnig, S. Berkebile, A.J. Fleming, G. Koller, K. Emtsev, T. Seyller, J.D. Riley, C. Ambrosch-Draxl, F.P. Netzer, M.G. Ramsey, Science 326, 702 (2009). doi:10.1126/science.1176105

    Article  CAS  Google Scholar 

  13. F. Himpsel, J. Electron Spectrosc. Relat. Phenom. 183, 114 (2011). doi:10.1016/j.elspec.2010.03.007

    Article  CAS  Google Scholar 

  14. J. Ziroff, F. Forster, A. Schöll, P. Puschnig, F. Reinert, Phys. Rev. Lett. 104(23), 233004 (2010). doi:10.1103/PhysRevLett.104.233004

    Article  CAS  Google Scholar 

  15. J.E. Ortega, S. Speller, A.R. Bachmann, A. Mascaraque, E.G. Michel, A. Närmann, A. Mugarza, A. Rubio, F.J. Himpsel, Phys. Rev. Lett. 84(26), 6110 (2000). doi:10.1103/PhysRevLett.84.6110

    Article  CAS  Google Scholar 

  16. A. Damascelli, Phys. Scr. T 109, 61 (2004)

    Article  Google Scholar 

  17. P.J. Feibelman, D.E. Eastman, Phys. Rev. B 10, 4932 (1974)

    Article  CAS  Google Scholar 

  18. J.W. Gadzuk, Phys. Rev. B 10, 5030 (1974). doi:10.1103/PhysRevB.10.5030

    Article  CAS  Google Scholar 

  19. T. Permien, R. Engelhardt, C.A. Feldmann, E.E. Koch, Chem. Phys. Lett. 98, 527 (1983)

    Article  CAS  Google Scholar 

  20. N.V. Richardson, Chem. Phys. Lett. 102, 390 (1983)

    Article  CAS  Google Scholar 

  21. W.D. Grobman, Phys. Rev. B 17, 4573 (1978). doi:10.1103/PhysRevB.17.4573

    Article  CAS  Google Scholar 

  22. S.M. Goldberg, C.S. Fadley, S. Kono, Solid State Commun. 28, 459 (1978)

    Article  CAS  Google Scholar 

  23. E.L. Shirley, L.J. Terminello, A. Santoni, F.J. Himpsel, Phys. Rev. B 51, 13614 (1995)

    Article  CAS  Google Scholar 

  24. H. Daimon, F. Matsui, Prog. Surf. Sci. 81, 367 (2006)

    Article  CAS  Google Scholar 

  25. L. Broekman, A. Tadich, E. Huwald, J. Riley, R. Leckey, T. Seyller, K. Emtsev, L. Ley, J. Electron Spectrosc. Relat. Phenom. 144–147, 1001 (2005). doi:10.1016/j.elspec.2005.01.022

    Article  Google Scholar 

  26. N. Koch, A. Vollmer, I. Salzmann, B. Nickel, H. Weiss, J.P. Rabe, Phys. Rev. Lett. 96, 156803 (2006). doi:10.1103/PhysRevLett.96.156803

    Article  CAS  Google Scholar 

  27. H. Kakuta, T. Hirahara, I. Matsuda, T. Nagao, S. Hasegawa, N. Ueno, K. Sakamoto, Phys. Rev. Lett. 98, 247601 (2007). doi:10.1103/PhysRevLett.98.247601

    Article  Google Scholar 

  28. S. Berkebile, P. Puschnig, G. Koller, M. Oehzelt, F.P. Netzer, C. Ambrosch-Draxl, M.G. Ramsey, Phys. Rev. B 77, 115312 (2008)

    Article  Google Scholar 

  29. M.L. Tiago, J.E. Northrup, S.G. Louie, Phys. Rev. B 67, 115212 (2003)

    Article  Google Scholar 

  30. K. Hummer, C. Ambrosch-Draxl, Phys. Rev. B 72, 205205 (2005)

    Article  Google Scholar 

  31. D. Nabok, P. Puschnig, C. Ambrosch-Draxl, O. Werzer, R. Resel, D.M. Smilgies, Phys. Rev. B 76, 235322 (2007). doi:10.1103/PhysRevB.76.235322

    Article  Google Scholar 

  32. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.Y. Raty, D.C. Allan, Comput. Mater. Sci. 25, 478 (2002)

    Article  Google Scholar 

  33. M. Koini, T. Haber, O. Werzer, S. Berkebile, G. Koller, M. Oehzelt, M. Ramsey, R. Resel, Thin Solid Films 517, 483 (2008). doi:10.1016/j.tsf.2008.06.053

    Article  CAS  Google Scholar 

  34. C.C. Mattheus, A.B. Dros, J.B.A. Meetsma, J.L. de Boer, T.T.M. Palstra, Acta Crystalogr. C 57, 939 (2001)

    Article  CAS  Google Scholar 

  35. T. Djuric, T. Ules, S. Gusenleitner, N. Kayunkid, H. Plank, G. Hlawacek, C. Teichert, M. Brinkmann, M.G. Ramsey, R. Resel, Phys. Chem. Chem. Phys. (2011, submitted)

    Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  37. M. Oehzelt, L. Grill, S. Berkebile, G. Koller, F.P. Netzer, M.G. Ramsey, Chem. Phys. Chem. 8, 1707 (2007). doi:10.1002/cphc.200700357

    Article  CAS  Google Scholar 

  38. S. Berkebile, T. Ules, P. Puschnig, L. Romaner, G. Koller, A.J. Fleming, K. Emtsev, T. Seyller, C. Ambrosch-Draxl, F.P. Netzer, M.G. Ramsey, Phys. Chem. Chem. Phys. 13, 3604 (2011). doi:10.1039/C0CP01458C

    Article  CAS  Google Scholar 

  39. G. Koller, S. Berkebile, M. Oehzelt, P. Puschnig, C. Ambrosch-Draxl, F.P. Netzer, M.G. Ramsey, Science 317, 351 (2007). doi:10.1126/science.1143239

    Article  CAS  Google Scholar 

  40. M.G. Ramsey, M. Schatzmayr, S. Stafström, F.F.P. Netzer, Europhys. Lett. 28, 85 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Austrian Science Fund (FWF), projects S97-04, S97-14, P21330-N20, and P23190-N16. We further acknowledge the Helmholtz-Zentrum Berlin - Electron storage ring BESSY II for provision of synchrotron radiation at beamline U125/2-SGM and in particular thank Dr. Christian Schüssler-Langeheine for assistance. We would also like to thank Prof. Falko P. Netzer and Prof. Thomas Seyller for discussions. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 226716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Puschnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Puschnig, P., Koller, G., Draxl, C., Ramsey, M.G. (2013). The Structure of Molecular Orbitals Investigated by Angle-Resolved Photoemission. In: Sitter, H., Draxl, C., Ramsey, M. (eds) Small Organic Molecules on Surfaces. Springer Series in Materials Science, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33848-9_1

Download citation

Publish with us

Policies and ethics