Skip to main content

Modular Car Body Design and Optimization by an Implicit Parameterization Technique via SFE CONCEPT

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 195))

Abstract

This paper presents recent developments on implicit parameterization techniques (based on the software SFE CONCEPT) for shape optimization of vehicles in the context of modern modular car body design. Because of the implicit definition of the parameters complemented by the mapping and re-meshing techniques inherent to the software, a flexible and powerful optimization approach can be realized, where the connectivity is maintained, the accuracy of finite element computations assured and the efficiency improved via appropriate definition of design variables and optimization algorithms. This is first demonstrated on component and module level and finally confirmed by a full vehicle problem.

F2012-E03-058

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Muffatto M (1999) Introducing a platform strategy in product development. Int J Prod Econ 60–61:145–153

    Article  Google Scholar 

  2. Ishii F, Yang TG (2003) Modularity: international industry benchmarking and research roadmap. In: Proceedings of DETC/ASME design engineering technical conference and computers and information in engineering conference, Chicago, 2–6 Sept 2003, DFM-48132

    Google Scholar 

  3. Renner I (2007) Supporting methods for function oriented modular toolkit development with focus on the automotive industry (in German), PhD thesis, Technische Universität München, Munich

    Google Scholar 

  4. Duddeck F (2008) Multidisciplinary optimization of car bodies. Struct Multidisc Optim 35(4):375–389

    Article  Google Scholar 

  5. Zimmer H, Prabhuwaingankar M, Duddeck F (2009) Topology- and geometry-based structure optimization using implicit parametric models and LS-OPT. In: Proceedings 7th European LS-DYNA conference, Salzburg

    Google Scholar 

  6. Georgios K, Dimitrios S (2009) Multi-disciplinary design optimization exploiting the efficiency of ANSA-LSOPT-META coupling. In: Proceedings 7th European LS-DYNA conference, Salzburg

    Google Scholar 

  7. Dietrich T (2013) PhD thesis, Fachgebiet computational mechanics, Technische Universität München, Munich, to be submitted, 2013

    Google Scholar 

  8. Hou S, Li Q, Long S, Yang X, Li W (2007) Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria. Finite Elem Anal Des 43:555–565

    Article  Google Scholar 

  9. Avalle M, Chiandussi G, Belingardi G (2002) Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Struct Multidisc Optim 24:325–332

    Article  Google Scholar 

  10. Chiandussi G, Fontana R, Urbinati F (1998) Design sensitivity analysis method for multidisciplinary shape optimization problems with linear and non-linear response. Eng Comput 15:391–417

    Article  MATH  Google Scholar 

  11. Chiandussi G, Bugeda G, Onate E (2000) Shape variable definition with C0, C1 and C2 continuity functions. Comput Meth Appl Mech Eng 188(4):727–742

    Article  MathSciNet  MATH  Google Scholar 

  12. Chiandussi G, Avalle M (2002) Maximisation of the crushing performance of a tubular device by shape optimisation. Comput Struct 80:2425–2432

    Article  Google Scholar 

  13. Farkas L, Canadas C, Donders S, van Langenhove T, Tzannetakis N (2009) Optimization study of a parametric vehicle bumper subsystem under multiple load cases using LMS Virtual. Lab and OPTIMUS. In: Proceedings 7th European LS-DYNA conference, Salzburg

    Google Scholar 

  14. Farkas L, Donders S, Schildermans D, Moens D, Vandepitte D (2010) Optimisation study of a vehicle bumper subsystem with fuzzy parameters. In: Proceedings ISMA: international conference on noise and vibration engineering, Leuven

    Google Scholar 

  15. Heiserer D, Zimmer H (2004) Shape optimization in the early phase of car body development (in German). In: Proceedings VDI Conf on numerical analysis and simulation for vehicle engineering, Würzburg

    Google Scholar 

  16. Hilmann J, Paas M, Hänschke A, Vietor T (2007) Automatic concept model generation for optimisation and robust design of passenger cars. Adv Eng Softw 38:795–801

    Article  Google Scholar 

  17. Hilmann J (2009) On the development of a process chain for structural optimization in vehicle passive safety. PhD thesis, Technische Universität Berlin, Berlin

    Google Scholar 

  18. Hilmann J, Scalera S, Arlt A (2011) Correlation of simulation models using concept modeling. In: Proceedings European hyperworks technical conference

    Google Scholar 

  19. Meyer O, Krumenaker T, Bernhard R, Dreses C, Schelkle E, Hänschke A, Pohl T, Hillebrand A, Zimmer H (2010) Parametrischer Bauraum-synchronisierter Fahrzeugentwurf. In: Proceedings SIMVEC, Baden Baden

    Google Scholar 

  20. Duddeck F (2007) Survey on robust design and optimisation for crashworthiness. In: Duddeck F, Bletzinger K-U, Bucher C, Matthies H, Meyer M (eds) Proceedings EUROMECH colloquium 482 efficient methods for robust design and optimisation, Queen Mary University of London, London

    Google Scholar 

  21. Lu G, Yu T (2003) Energy absorption of structures and materials. Woodhead Publ Ltd, Cambridge

    Book  Google Scholar 

  22. Kim H-S, Chen W, Wierzbicki T (2002) Weight and crash optimization of foam-filled three-dimensional S-frame. Comput Mech 28:417–424

    Article  MATH  Google Scholar 

  23. Yin H, Wena G, Hou S, Chen K (2011) Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes. Mater Des 32:4449–4460

    Article  Google Scholar 

  24. Zarei H, Kröger M (2008) Optimum honeycomb filled crash absorber design. Mater Des 29:193–204

    Article  Google Scholar 

  25. Zhang Z, Liu S, Tang Z (2009) Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam. Thin-Walled Struct 47:868–878

    Article  Google Scholar 

  26. Eby DJ, Averill RC, Goodman ED, Sidhua RS (2002) Shape optimization of crashworthy structures. Proceedings 7th international LS-DYNA users conference

    Google Scholar 

  27. Rayamajhi M, Duddeck F, Hunkeler S (2010) Shape optimisation of vehicle frontal structure using evolutionary algorithm. In: Duddeck F, Querin OM, Sienz J, Toropov VV, Shaheed MH (eds) Proceedings 8th ASMO UK/ISSMO conference on engineering design optimization, product and process improvement, Queen Mary University of London, London, July 2010

    Google Scholar 

  28. Rayamajhi M (2013) PhD thesis, Queen Mary University of London, UK, to be submitted 2013

    Google Scholar 

  29. Wu H, Xin Y (2009) Optimal design of the S-Rail for crashworthiness analysis IEEE. In: Proceedings international joint conference on computational sciences and optimization

    Google Scholar 

  30. Wang H, Müllerschön H, Mehrens T (2005) Shape optimization of a crashbox using hyperMorph and LS-OPT. In: Proceedings 4th German LS-DYNA forum, Bamberg

    Google Scholar 

  31. Cho Y-B, Bae C-H, Suh M-W, Sin H-C (2006) A vehicle front frame crash design optimization using hole-type and dent-type crush initiator. Thin-walled Struct 44:415–428

    Article  Google Scholar 

  32. Redhe M, Nilsson L, Bergman F, Stander N (2005) Shape optimization of a vehicle Crash-box using LS-OPT. In: Proceedings 5th European LS-DYNA users conference, 5a-27

    Google Scholar 

  33. Averill RC (2004) Efficient shape optimization of crashworthy structures using a new substructuring method. 3rd LS-DYNA users forum, Bamberg

    Google Scholar 

  34. Chase N, Sidhu R, Averill RC (2012) A new method for efficient global optimization of large systems using sub-models: HEEDS COMPOSE demonstrated on a crash optimization problem. LS-DYNA user forum

    Google Scholar 

  35. Volz K (2011) Physikalisch begründete Ersatzmodelle für die Crashoptimierung von Karosseriestrukturen in frühen Projektphasen. PhD thesis, FG computational mechanics, Technische Universität München, Munich

    Google Scholar 

  36. Duddeck F, Volz K (2012) A new topology optimization approach for crashworthiness of passenger vehicles based on physically defined equivalent static loads. In: Proceedings ICRASH conference, Milano

    Google Scholar 

  37. Volkswagen (2010) Annual media conference

    Google Scholar 

  38. Suh ES, de Weck O, Yong Kim I, Chang D (2007) Flexible platform component design under uncertainty. J Intell Manuf 18:115–126

    Article  Google Scholar 

  39. Hänschke A, Zhou S, Lee M, Hilmann J, Kaba E, Prabhuwaingankar M (2007) Parametric model knowledgebase for vehicle design to improve the early vehicle attribute assessments. In: Proceedings international automotive body congress (IABC), Berlin

    Google Scholar 

  40. Xu S (2007) Use of topology design exploration and parametric shape optimization process to development highly efficient and lightweight vehicle body structure. In: Proceedings international automotive body congress (IABC), Berlin

    Google Scholar 

  41. Volz K, Dirschmid F, Duddeck F (2006) Body-in-white crash optimization in the early phase of product development. In: Proceedings VDI conference on numerical analysis and simulation in vehicle engineering, Würzburg

    Google Scholar 

  42. Volz K, Frodl B, Zimmer H (2007) Optimizing topology and shape for crashworthiness in vehicle product development. In: Proceedings international automotive body congress (IABC), Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Duddeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duddeck, F., Zimmer, H. (2013). Modular Car Body Design and Optimization by an Implicit Parameterization Technique via SFE CONCEPT. In: Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33835-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33835-9_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33834-2

  • Online ISBN: 978-3-642-33835-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics