Skip to main content

Characterization of the Automotive Seat Structural Dynamics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 201))

Abstract

Many researches have discussed the dynamics of the vehicle seat structure in response to vibration. The structural dynamics of the seat is linked to the seat noise, vibration and harshness (NVH) quality. The interaction of the vehicle seat resonances with the seat mounting points or the floor resonances may considerably increase the transmission of the vibration into the seat and cause either vibration discomfort or the rattle noise. The vehicle seat rattles or, in general, buzz, squeak, and rattle (BSR) noises are one of the major issues which are directly linked to the NVH of the vehicle. Predicting and improving the seat BSR noise in early design phase is still challenging. This is mainly due to the complexity, nonlinearity and uncertainty of the impact mechanism at joints contributed to the rattle. In this research, two experiments are designed. The first experiment is set up to characterize the seat resonant frequencies and its corresponding structural mode-shapes. The second experiment is designed to measure the seat radiated noise when it goes under vibration excitation. Alternatively, a concept Computer Aided Engineering (CAE) model of the seat is developed and the seat structural dynamics is characterized by using this analytical model. Comparisons of the results of the simulation and experiment validate the developed CAE model. The seat structure demonstrated two major torsion and fore-aft bending structural modes in low vibration frequencies (<50 Hz) where the structure have more potential to be rattled. We have confirmed that the occurrence of the rattle noise is related to the seat structural dynamics and it can be controlled and managed by modifying the structure. Two modifications are designed using the seat CAE model. One modification is designed to increase the seat torsion resonance nearly 4 Hz, and the second modification is conducted to decrease the seat torsion resonance nearly 4 Hz. The designed modifications are then implemented on the test seat and the rattle noise is measured on the two modified seats. The results confirm that by changing the seat resonant frequency, the rattle noise and in general BSR noise can be improved or controlled accordingly. Consequently, characterization of the seat structural dynamics leaded to control and improve the seat BSR noise in early design phase by using the seat CAE model.

F2012-J06-013

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rao MD (2003) Recent application of viscoelastic damping for noise control in automobiles and commercial airplanes. J Sound Vib 262:457–474

    Article  Google Scholar 

  2. Cerrato-Jay G et al (2001) Automatic detection of buzz, squeak and rattle events, SAE Paper 2001-01-1479. SAE noise and vibration conference & exposition, Traverse City, Michigan

    Google Scholar 

  3. Kavarana F, Reiders B (1999) Squeak and Rattle-state of the art and beyond, SAE Paper 1999-01-1728. SAE noise and vibration conference & exposition, Traverse City, Michigan

    Google Scholar 

  4. Gosavi SS (2005) Automotive Buzz, Squeak and Rattle (BSR) detection and prevention. TATA technologies Ltd, Pune, pp 661–667

    Book  Google Scholar 

  5. Broo F, Derico J (1995) Silicon elastomer reduces noise, vibration, and squeaks in vehicle instrument panels, SAE Paper 1995-06-35. Proceedings of the noise and vibration conference

    Google Scholar 

  6. Nolan S et al (1996) Instrument panel squeak and rattle testing and requirements. IMAC-XIV, SEM, pp. 490–494

    Google Scholar 

  7. Eiss N et al (1997) Frictional behaviour of automotive interior polymeric material Pairs, SAE Paper 1997-20-56. Proceedings of the 1997 noise and vibration conference, pp. 1479–1496

    Google Scholar 

  8. Shin S, Cheong C (2010) Experimental characterization of instrument panel Buzz, Squeak, and Rattle (BSR) in a vehicle. J Appl Acoust 71(12):1162–1168

    Article  Google Scholar 

  9. Hagiwara I, Ma Z-D (1992) Development of Eigen mode and frequency response sensitivity analysis methods for coupled acoustic-structural systems. JSME Int J Series III 35(2):229–235

    Google Scholar 

  10. Ma Z-D, Hagiwara I (1992) Sensitivity calculation method for conducting modal frequency response analysis of coupled acoustic-structural systems. JSME Int J Series III 35(1):14–21

    Google Scholar 

  11. Donders S et al (2009) A reduced beam and joint concept modelling approach to optimize global vehicle body dynamics. Finite Elem Anal Des 45:439–455

    Article  Google Scholar 

  12. Mundo D et al (2009) Simplified modelling of joints and Beam-like structures for BIW optimization in a concept phase of the vehicle design process. Finite Elem Anal Des 45:456–462

    Article  Google Scholar 

  13. Fard M (2011) Structural dynamics characterization of the vehicle seat for NVH performance analysis. SAE paper, 01-0501

    Google Scholar 

  14. Guyan R (1965) Reduction of stiffness and mass matrices. AIAA J 3(2):380–387

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Fard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tatari, M., Fard, M., Nasrolahzadeh, N., Mahjoob, M. (2013). Characterization of the Automotive Seat Structural Dynamics. In: Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33832-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33832-8_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33831-1

  • Online ISBN: 978-3-642-33832-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics