Skip to main content

Apply Near-Field Acoustic Holography to Identify the Noise Source of Pass-by Vehicles

  • Conference paper
  • First Online:
Proceedings of the FISITA 2012 World Automotive Congress

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 201))

Abstract

When using Near-field Acoustic Holography (NAH) to identify the noise source of a pass-by vehicle in a test—room, the hologram aperture must be at least as large as the source aperture, requiring a large element array. The reconstruction of NAH is an ill-posed inversion problem that requires a regularization procedure. The commonly used Tikhonov regularization procedures require a significant amount of computing time for a large hologram array. In this work, a fast and robust regularization procedure is developed for NAH on the basis of a statistical energy constraint equation (SECE) that links the hologram and the reconstruction sound pressures. This procedure is able to identify the optimal cutoff wave number for an existing exponential filter in a single measurement event without a prior knowledge of the noise. It is tested via numerical simulation for an exponential filter function in an NAH at various sound frequencies, hologram distances and signal-to-noise ratios (SNR). The SECE procedure is applied to identify the noise source on the right side of a vehicle in a semi-anechoic chamber. The results are compared with those obtained with the Far-field filter, generalized cross validation (GCV), L-curve and the Morozov discrepancy principle (MDP) methods.

F2012-J05-021

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams EG, Maynard JD (1980) Holographic imaging without the wavelength resolution limit. Phys Rev Lett 45:554–557

    Article  Google Scholar 

  2. Maynard JD, Williams EG, Lee Y (1985) Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. J Acoust Soc Am 78(4):1395–1413

    Article  Google Scholar 

  3. Nam KU, Kim YH (1999) Errors due to sensor and position mismatch in planar acoustic holography. J Acoust Soc Am 106(4):1655–1665

    Article  Google Scholar 

  4. Carroll GP (1999) The effect of sensor placement errors on cylindrical near-field acoustic holography. J Acoust Soc Am 105(4):2269–2276

    Article  Google Scholar 

  5. Williams EG (1999) Fourier acoustics: sound radiation and near field acoustical holography. Academic Press, London, pp 1–306

    Google Scholar 

  6. Williams EG (2001) Regularization methods for near-field acoustical holography. J Acoust Soc Am 110(4):1976–1988

    Article  Google Scholar 

  7. Veronesi WA, Maynard JD (1987) Near-field acoustic holography (NAH): II. holography reconstruction algorithms and computer complementation. J Acoust Soc Am 81(5):1307–1322

    Article  Google Scholar 

  8. Hansen PC, Jensen TK, Rodriguez G (2007) An adaptive pruning algorithm for the discrete L-curve criterion. J Comp Appl Math 198(2):483–492

    Article  MathSciNet  MATH  Google Scholar 

  9. Lingzhi L, Li J, Lu B, Liu Y, Liu K (2010) The determination of regularization parameters in planar near field acoustic holography. Acta Acustica 35(2):169–178

    Google Scholar 

  10. Wu SF (2008) Methods for reconstructing acoustic quantities based on acoustic pressure measurements. J Acoust Soc Am 124(5):2680–2697

    Article  Google Scholar 

  11. Bendat JS, Piersol AG (1986) Random data: analysis and measurement procedures. Wiley, New York, Chap. 3, p 66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

Using Eqs. (10), (11) and (12), the correlation between the hologram and measured pressure \( E\left[ {\hat{p}_{h} (x,y)\hat{p}_{h}^{*} (x^{\prime},y^{\prime})} \right] \) can be derived as

$$ \begin{gathered} E\left[ {\hat{p}_{h} (x,y)\hat{p}_{h}^{*} (x^{\prime},y^{\prime})} \right] = E[\{ (1 + \varepsilon_{a} (x,y))e^{{i\varepsilon_{\phi } (x,y)}} p_{h} (x,y)\} \{ (1 + \varepsilon_{a} (x^{\prime},y^{\prime}))e^{{ - i\varepsilon_{\phi } (x^{\prime},y^{\prime})}} p_{h}^{*} (x^{\prime},y^{\prime})\} ] \hfill \\ = E[e^{{i\varepsilon_{\phi } (x,y)}} e^{{ - i\varepsilon_{\phi } (x^{\prime},y^{\prime})}} p_{h} (x,y)p_{h}^{*} (x^{\prime},y^{\prime})] + E[\varepsilon_{a} (x,y)\varepsilon_{a} (x^{\prime},y^{\prime})e^{{i\varepsilon_{\phi } (x,y)}} e^{{ - i\varepsilon_{\phi } (x^{\prime},y^{\prime})}} p_{h} (x,y)p_{h}^{*} (x^{\prime},y^{\prime})] \hfill \\ = E\left[ {e^{{i\varepsilon_{\phi } }} } \right]E\left[ {e^{{ - i\varepsilon_{\phi } }} } \right]p_{h} (x,y)p_{h}^{*} (x^{\prime},y^{\prime}) + (1 - E\left[ {e^{{i\varepsilon_{\phi } }} } \right]E\left[ {e^{{ - i\varepsilon_{\phi } }} } \right])p_{h} (x,y)p_{h}^{*} (x^{\prime},y^{\prime})\delta (x - x^{\prime})\delta (y - y^{\prime}) \hfill \\ \;\;+ E[\varepsilon_{a}^{2} ]p_{h} (x,y)p_{h}^{*} (x^{\prime},y^{\prime})\delta (x - x^{\prime})\delta (y - y^{\prime}) \hfill \\ = e^{{ - \sigma_{\phi }^{2} }} p_{h} (x,y)p_{h}^{*} (x^{\prime},y^{\prime}) + (1 + \sigma_{a}^{2} - e^{{ - \sigma_{\phi }^{2} }} )p_{h} (x,y)p_{h}^{*} (x^{\prime},y^{\prime})\delta (x - x^{\prime})\delta (y - y^{\prime}). \hfill \\ \end{gathered} $$
(A1)

Equations (2) and (3) show that the angular spectrum \( P(k_{x} ,k_{y} ) \) and spatial sound pressure \( p(x,y) \) form a Fourier Transform pair. Using Eq. (13), the mean value of the measured hologram angular spectrum \( \hat{P}_{h} (k_{x} ,k_{y} ) \).

$$ \begin{gathered} E[(\hat{P}_{h} (k_{x} ,k_{y} )] = E[\int_{\infty }^{\infty } {dx\int_{ - \infty }^{\infty } {dy\hat{p}_{h} (x,y)e^{{ - i(k_{x} x + k_{y} y)}} } } ] \hfill \\ = \int_{\infty }^{\infty } {dx\int_{ - \infty }^{\infty } {dyE[\hat{p}_{h} (x,y)]e^{{ - i(k_{x} x + k_{y} y)}} } } = e^{{ - \sigma_{\phi }^{2} /2}} P_{h} (k_{x} ,k_{y} ). \hfill \\ \end{gathered} $$
(A2)

The bias error of the measured hologram angular spectrum \( \hat{P}_{h} (k_{x} ,k_{y} ) \) is

$$ b[\hat{P}_{h} (k_{x} ,k_{y} )] = E\left[ {\hat{P}_{h} (k_{x} ,k_{y} )} \right] - P_{h} (k_{x} ,k_{y} ) = (e^{{ - \sigma_{\phi }^{2} /2}} - 1)P_{h} (k_{x} ,k_{y} ). $$
(A3)

Using Eq. (A1), the mean value of \( \left| {\hat{P}_{h} (k_{x} ,k_{y} )} \right|^{2} \) can be derived as

$$ \begin{gathered} E\left[ {\left| {\hat{P}_{h} (k_{x} ,k_{y} )} \right|^{2} } \right] = E[\left| {\int_{\infty }^{\infty } {dx\int_{ - \infty }^{\infty } {dy\hat{p}_{h} (x,y)e^{{ - i(k_{x} x + k_{y} y)}} } } } \right|^{2} ] \hfill \\ = E[(\int_{ - \infty }^{\infty } {dx\int_{ - \infty }^{\infty } {dy\hat{p}_{h} (x,y)e^{{ - i(k_{x} x + k_{y} y)}} } } )(\int_{ - \infty }^{\infty } {dx\int_{ - \infty }^{\infty } {dy\hat{p}_{h}^{*} (x,y)e^{{i(k_{x} x + k_{y} y)}} } } )] \hfill \\ = \int_{ - \infty }^{\infty } {dx\int_{ - \infty }^{\infty } {dy\int_{ - \infty }^{\infty } {dx^{\prime}\int_{ - \infty }^{\infty } {dy^{\prime}} } E[\hat{p}_{h} (x,y)\hat{p}_{h}^{*} (x^{\prime},y^{\prime})]e^{{ - i(k_{x} x + k_{y} y - k_{x} x^{\prime} - k_{y} y^{\prime})}} } } \hfill \\ = \int_{ - \infty }^{\infty } {dx\int_{ - \infty }^{\infty } {dy\int_{ - \infty }^{\infty } {dx^{\prime}\int_{ - \infty }^{\infty } {dy^{\prime}} } \{ E\left[ {e^{{i\varepsilon_{\phi } }} } \right]E\left[ {e^{{ - i\varepsilon_{\phi } }} } \right]p_{h} (x,y)p_{h}^{*} (x^{\prime},y^{\prime}) \,+\, } } \hfill \\ (1 + E[\varepsilon_{a}^{2} ] - E\left[ {e^{{i\varepsilon_{\phi } }} } \right]E\left[ {e^{{ - i\varepsilon_{\phi } }} } \right])p_{h} (x,y)p_{h}^{*} (x^{\prime},y^{\prime})\delta (x - x^{\prime})\delta (y - y^{\prime})\} e^{{ - i(k_{x} x + k_{y} y - k_{x} x^{\prime} - k_{y} y^{\prime})}} . \hfill \\ \end{gathered} $$
(A4)

Using Parseval’s theorem, \( E\left[ {\left| {\hat{P}_{h} (k_{x} ,k_{y} )} \right|^{2} } \right] \) is finally derived as

$$ \begin{gathered} E\left[ {\left| {\hat{P}_{h} (k_{x} ,k_{y} )} \right|^{2} } \right] = E\left[ {e^{{i\varepsilon_{\phi } }} } \right]E\left[ {e^{{ - i\varepsilon_{\phi } }} } \right]\left| {P_{h} (k_{x} ,k_{y} )} \right|^{2} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + (1 + E[\varepsilon_{a}^{2} ] - E\left[ {e^{{i\varepsilon_{\phi } }} } \right]E\left[ {e^{{ - i\varepsilon_{\phi } }} } \right])\int_{ - \infty }^{\infty } {dk_{x} \int_{ - \infty }^{\infty } {dk_{y} } } \left| {P_{h} (k_{x} ,k_{y} )} \right|^{2} \hfill \\ = e^{{ - \sigma_{\phi }^{2} }} \left| {P_{h} (k_{x} ,k_{y} )} \right|^{2} + (1 + \sigma_{a}^{2} - e^{{ - \sigma_{\phi }^{2} }} )\int_{ - \infty }^{\infty } {dk_{x} \int_{ - \infty }^{\infty } {dk_{y} } } \left| {P_{h} (k_{x} ,k_{y} )} \right|^{2} . \hfill \\ \end{gathered} $$
(A5)

Using Eqs. (A2) and (A5), the variance of \( \hat{P}_{h} (k_{x} ,k_{y} ) \) is

$$ \begin{gathered} Var[\hat{P}_{h} (k_{x} ,k_{y} )] = E\left[ {\left| {\hat{P}_{h} (k_{x} ,k_{y} )} \right|^{2} } \right] - \left| {E\left[ {\hat{P}_{h} (k_{x} ,k_{y} )} \right]} \right|^{2} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\kern 1pt} {\kern 1pt} = (1 + \sigma_{a}^{2} - e^{{ - \sigma_{\phi }^{2} }} )\int_{ - \infty }^{\infty } {dk_{x} \int_{ - \infty }^{\infty } {dk_{y} } } \left| {P_{h} (k_{x} ,k_{y} )} \right|^{2} . \hfill \\ \end{gathered} $$
(A6)

Next, the mean value and variance of the reconstruction angular spectrum \( \hat{P}_{z} (k_{x} ,k_{y} ) \) are derived. Using Eq. (1) and (A2), the mean value of \( \hat{P}_{z} (k_{x} ,k_{y} ) \) is:

$$ \begin{gathered} E[\hat{P}_{z} (k_{x} ,k_{y} )] = E[\hat{P}_{h} (k_{x} ,k_{y} )G(k_{x} ,k_{y} ,z - z_{h} )] \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = e^{{ - \sigma_{\phi }^{2} /2}} G(k_{x} ,k_{y} ,z - z_{h} )P_{h} (k_{x} ,k_{y} ). \hfill \\ \end{gathered} $$
(A7)

The bias error of \( \hat{P}_{z} (k_{x} ,k_{y} ) \) is:

$$ b[\hat{P}_{z} (k_{x} ,k_{y} )] = E\left[ {\hat{P}_{z} (k_{x} ,k_{y} )} \right] - P_{z} (k_{x} ,k_{y} ) = (e^{{ - \sigma_{\phi }^{2} /2}} - 1)G(k_{x} ,k_{y} ,z - z_{h} )P_{h} (k_{x} ,k_{y} ). $$
(A8)

Using Eqs. (A5) and (A6), the mean value of \( \left| {\hat{P}_{z} (k_{x} ,k_{y} )} \right|^{2} \) is

$$\begin{gathered} E\left[ {\left| {\hat{P}_{z} (k_{x} ,k_{y} )} \right|^{2} } \right] = E[\left| {\hat{P}_{h} (k_{x} ,k_{y} )G(k_{x} ,k_{y} ,z - z_{h} )} \right|^{2} ]\; = E[\left| {\hat{P}_{h} (k_{x} ,k_{y} )} \right|^{2} \left| {G(k_{x} ,k_{y} ,z - z_{h} )} \right|^{2} ] \hfill \\ \; = \left| {G(k_{x} ,k_{y} ,z - z_{h} )} \right|^{2} \{ e^{{ - \sigma_{\phi }^{2} }} \left| {P_{h} (k_{x} ,k_{y} )} \right|^{2} \,+\, (1 + \sigma_{a}^{2} - e^{{ - \sigma_{\phi }^{2} }} )\int_{ - \infty }^{\infty } {dk_{x} \int_{ - \infty }^{\infty } {dk_{y} } } \left| {P_{h} (k_{x} ,k_{y} )} \right|^{2} \} \hfill \\ \; = e^{{ - \sigma_{\phi }^{2} }} \left| {P_{z} (k_{x} ,k_{y} )} \right|^{2} \,+ \,\left| {G(k_{x} ,k_{y} ,z - z_{h} )} \right|^{2} Var[\hat{P}_{h} (k_{x} ,k_{y} )]. \hfill \\ \end{gathered} $$
(A9)

Using Eq (A7) and (A9), the variance of \( \hat{P}_{z} (k_{x} ,k_{y} ) \) is

$$ \begin{gathered} Var[\hat{P}_{z} (k_{x} ,k_{y} )] = E\left[ {\left| {\hat{P}_{z} (k_{x} ,k_{y} )} \right|^{2} } \right] - \left| {E\left[ {\hat{P}_{z} (k_{x} ,k_{y} )} \right]} \right|^{2} \hfill \\ {\kern 1pt} = \left| {G(k_{x} ,k_{y} ,z - z_{h} )} \right|^{2} Var[\hat{P}_{h} (k_{x} ,k_{y} )] \hfill \\ = \left| {G(k_{x} ,k_{y} ,z - z_{h} )} \right|^{2} (1 + \sigma_{a}^{2} - e^{{ - \sigma_{\phi }^{2} }} )\int_{ - \infty }^{\infty } {dk_{x} \int_{ - \infty }^{\infty } {dk_{y} } } \left| {P_{h} (k_{x} ,k_{y} )} \right|^{2} . \hfill \\ \end{gathered} $$
(A10)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, L., Li, J., Lu, B., Liu, Y. (2013). Apply Near-Field Acoustic Holography to Identify the Noise Source of Pass-by Vehicles. In: Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33832-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33832-8_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33831-1

  • Online ISBN: 978-3-642-33832-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics