Skip to main content

Context-Aware Middleware for Vehicular Applications

  • Conference paper
  • First Online:
Proceedings of the FISITA 2012 World Automotive Congress

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 194))

Abstract

Developing vehicular distributed applications faces many challenges because most of them apply their specialized communication protocols and technical standards. We propose Context-Aware Middleware for Vehicular Applications (CAMVA), which can react to around environments adaptively and timely. CAMVA uses components based design pattern, and is optimized a lot in terms of vehicular complexity and special requirements of vehicular applications on security and immediacy, by which software programmers can develop and deploy vehicular applications quickly and reliably through assembling, plugging and articulating the existing components even though they are not familiar with the bottom details. CAMVA is located between application level and operation system level, and is composed of collection layer, core layer, running layer, component container, and component library. CAMVA realizes context-aware ability and supports complex vehicular environments. CAMVA behaves better in immediacy, expansibility, static configurability, and dynamic adaptability aspects, so it can achieve strict requirements of intelligent vehicles on middleware.

F2012-D03-012

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong KD, Tepe K, Chen W et al. (2006) Inter-vehicular communications. IEEE Wirel Commun 13(5): 6–7

    Google Scholar 

  2. Yang DR, Luan J, Jun-zhong GU (2005) Comparative research on middleware techniques. Appl Comput Syst (3):27–30

    Google Scholar 

  3. Ye F, Adams M, Roy S (2008) V2V wireless communication protocol for rear-end collision avoidance on highways. In: Proceedings of the IEEE communications workshops. Piscataway, IEEE, pp 375–379

    Google Scholar 

  4. Huan Z, Shou-zhi X, Cheng-xia L (2009) A V2V broadcast protocol for chain collision avoidance on highways. In: Proceedings of 2009 IEEE International Conference on Communication Technology and Applications, pp 2062–2067

    Google Scholar 

  5. Tang A, Yip A (2010) Collision avoidance timing analysis of DSRC-based vehicles. Accid Anal Prev 42(1):182–195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Deng, W., Zhou, P. (2013). Context-Aware Middleware for Vehicular Applications. In: Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33829-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33829-8_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33828-1

  • Online ISBN: 978-3-642-33829-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics