Skip to main content

A Rule-Based and Imperative Language for Biochemical Modeling and Simulation

  • Conference paper
Software Engineering and Formal Methods (SEFM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7504))

Included in the following conference series:

Abstract

We present COSBI LAB Language (\(\mathcal{L}\) for short), a simple modeling language for biochemical systems. \(\mathcal{L}\) features stochastic multiset rewriting, defined in part through rewriting rules, and in part through imperative code.

We provide a continuous-time Markov chain semantics for \(\mathcal{L}\) at three different abstraction levels, linked by Galois connections. We then describe a simulation algorithm for the most concrete semantics, which is then adapted to work at higher abstract levels while improving space and time performance. Doing so results in the well-known Gillespie’s Direct Method, as well as in a further optimized algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: Proceedings of the 4th POPL, pp. 238–252. ACM (1977)

    Google Scholar 

  2. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling of Cellular Signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry A 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  4. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  5. Priami, C., Quaglia, P., Romanel, A.: BlenX Static and Dynamic Semantics. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 37–52. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Priami, C., Quaglia, P., Zunino, R.: An imperative language of self-modifying graphs for biological systems. In: ACM Symposium on Applied Computing (SAC) (to appear, 2012)

    Google Scholar 

  7. Romanel, A., Priami, C.: On the decidability and complexity of the structural congruence for beta-binders. Theor. Comput. Sci. 404(1-2), 156–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikolić, Đ., Priami, C., Zunino, R. (2012). A Rule-Based and Imperative Language for Biochemical Modeling and Simulation. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds) Software Engineering and Formal Methods. SEFM 2012. Lecture Notes in Computer Science, vol 7504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33826-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33826-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33825-0

  • Online ISBN: 978-3-642-33826-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics