Skip to main content

Bioremediation of Organic Pollutants Using Phanerochaete chrysosporium

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

Phanerochaete chrysosporium—white rot fungus—has been reported as an effective for bioremediation of different hazardous compounds. In this chapter, the life cycle of white rot fungus and the conditions required for its growth so as to make effective bioremediation of compounds have been cited. The research study carried out by the scientists for the bioremediation of polycyclic aromatic hydrocarbons (PAHs), contaminated soils, and other compounds has been highlighted as research case studies. The mechanism of bioremediation of different compounds with respect to use of white rot fungus has also been cited. Therefore, the use of white rot fungus for the biodegradation of the hazardous compounds will benefit to decontaminate the environment, and this technology can be adapted as a remedial measure for treatment of hazardous wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken BS, Logan BE (1996) Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media. Biodegradation 7(3):175–182

    Article  PubMed  CAS  Google Scholar 

  • Aken BV, Hofrichter M, Scheibner K, Hatakka AI, Naveau H, Agathos SN (1999) Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white rot basidiomycete Phlebia radiata. Biodegradation 10:83–91

    Article  PubMed  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, New York

    Google Scholar 

  • Alloway JB, Ayres DC (1993) Chemical principles of environmental pollution. Chapman and Hall, London

    Book  Google Scholar 

  • Andersson BE, Henrysson T (1996) Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white rot fungi. Appl Microbiol Biotechnol 46:647–652

    Article  CAS  Google Scholar 

  • Asamudo NU, Daba AS, Ezeronye OU (2005) Bioremediation of textile effluent using Phanerochaete chrysosporium. Afr J Biotechnol 4:1548–1553

    CAS  Google Scholar 

  • Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb Ecol 20:197–204

    Article  CAS  Google Scholar 

  • Aust SD, Swaner PR, Stahl JD (2003) Detoxification and metabolism of chemicals by white rot fungi. Pesticide decontamination and detoxification. In: Zhu JJPC, Aust SD, Lemley Gan AT (eds) Pesticide decontamination and detoxification. Oxford University Press, Washington, DC, pp 3–14

    Chapter  Google Scholar 

  • Axtell C, Johnston CG, Bumpus JA (2000) Bioremediation of soil contaminated with explosives at the Naval Weapons Station Yorktown. Soil Sediment Contam Int J 9:537–548

    Article  CAS  Google Scholar 

  • Bumpus JA, Mileski G, Brock B, Ashbaugh W, Aust SD (1988) Biological oxidations of organic compounds by enzymes from a white rot fungus. In: Land disposal, remedial action, incineration and treatment of hazardous waste. Proceedings of the fourteenth annual research symposium, May 1988, Cincinnati, OH

    Google Scholar 

  • Bumpus JA, Kakar SN, Coleman RD (1993) Fungal degradation of organophosphorous insecticides. Appl Biochem Biotechnol 39:715–726

    Article  PubMed  Google Scholar 

  • Chen J, Hu JD, Wang XJ, Tao S (2005) Degradation of polycyclic aromatic hydrocarbons from soil by white rot fungi. Environ Chem 24:270–274 (in Chinese)

    Google Scholar 

  • Chupungars K, Rerngsamran P, Thaniyavarn S (2008) Polycyclic aromatic hydrocarbons degradation by Agrocybe sp. CU-43 and its fluorene transformation. Int Biodeter Biodegrad 1:1–7

    Google Scholar 

  • Cookson JT (1995) Bioremediation engineering: design and application. McGraw Hill, New York

    Google Scholar 

  • Couto SR (2007) Decolouration of industrial azo dyes by crude laccase from Trametes hirsute. J Hazard Mater 148:768–770

    Article  PubMed  CAS  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    PubMed  CAS  Google Scholar 

  • Donnelly KC, Chen JC, Huebner HJ, Brown KW, Autenrieth RL, Bonner JS (1997) Utility of four strains of white rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ Toxicol Chem 16:1105–1110

    Article  CAS  Google Scholar 

  • Eaton RA, Hale MDC (1993) Wood, decay, pests and prevention. Chapman and Hall, London

    Google Scholar 

  • Eggen T, Sveum P (1999) Decontamination of aged creosote polluted soil: the influence of temperature, white rot fungus Pleurotus ostreatus, and pretreatment. Int Biodeter Biodegrad 43:125–133

    Article  CAS  Google Scholar 

  • Ergul FE, Sargin S, Ongen G, Sukan FV (2009) Dephenolisation of olive mill wastewater using adapted Trametes versicolor. Int Biodeter Biodegrad 63:1–6

    Article  CAS  Google Scholar 

  • Esteve-Nunez A, Caballero A, Ramos J (2001) Biological degradation of 2,4,6-trinitotoluene. Microbiol Mol Biol Rev 65(3):335–352

    Article  PubMed  CAS  Google Scholar 

  • Fan WP, Cao HJ, Zhang J, Wei H (2001) Study on the treatment of dyeing effluents by using rice straw powder immobilized mycelium of white rot fungus. Ind Water Treat 21:19–21 (in Chinese)

    CAS  Google Scholar 

  • Fang JZ, Huang SB (2002) Process of oxidation by white rot-fungi and coagulation for treating bleaching effluents. Environ Sci Technol 25:12–13 (in Chinese)

    Google Scholar 

  • Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671

    PubMed  CAS  Google Scholar 

  • Fulekar MH (2010) Environmental biotechnology: recent advances. Springer, New York

    Google Scholar 

  • Gaspare L, Machiwa JF, Mdachi SIM, Streck G, Brack W (2009) Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dares Salaam. Tanzania Environ Pollut 157:24–34

    Article  CAS  Google Scholar 

  • Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45:1741–1747

    PubMed  CAS  Google Scholar 

  • Gomaa OM, Linz JE, Reddy CA (2008) Decolorization of Victoria blue by the white rot fungus, Phanerochaete chrysosporium. World J Microbiol Biotechnol 24:2349–2356

    Article  Google Scholar 

  • Gregory P (1993) Dyes and dye intermediates. In: Kroschwitz JI (ed) Encyclopedia of chemical technology, vol 8. Wiley, New York, pp 544–545

    Google Scholar 

  • Hamman S (2004) Bioremediation capabilities of white rot fungi. Review article, Springer

    Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    PubMed  CAS  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Peggler DN (1995) Ainsworth and Bisby’s dictionary of the fungi, 8th edn. CAB, Oxon, xii+616 pp, 195

    Google Scholar 

  • Hestbjerg H, Willumsen PA, Christensen M, Andersen O, Jacobsen CS (2003) Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 22(4):692–698

    PubMed  CAS  Google Scholar 

  • Hodgson J, Rho D, Guiot SR, Ampleman G, Thiboutot S, Hawari J (2000) Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium. Can J Microbiol 46:110–118

    PubMed  CAS  Google Scholar 

  • http://www.worldoffungi.org/Mostly_Mycology/Lucy_GoodeveDocker_bioremediation_website/whiterotfungi.htm

  • Huang J, Zhou SF (1999) Study on the biodegradation of TNT packing wastewater by white rot fungi. Environ Sci Technol (3):17–19 (in Chinese)

    Google Scholar 

  • Joyce TW, Chang HM, Vasudevan B, Taneda H (1987). Degradation of hazardous organics by one white rot fungus-Phanerochaete chrysosporium. In Proceedings of the 184th American Chemical Society National Meeting, New Orleans, LA, Aug. 30–Sept.4, American Chemical, pp 217–217

    Google Scholar 

  • Kamei I, Kogura R, Kondo R (2006) Metabolism of 4,4′-dichlorobiphenyl by white rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biotechnol 72:566–575

    Article  PubMed  CAS  Google Scholar 

  • Knapp JS, Newby PS (1999) The decolourisation of a chemical industry effluent by white rot fungi. Water Res 33:575–577

    Article  CAS  Google Scholar 

  • Kohler A, Jager A, Willeshansen H, Graf H (1988) Extracellular ligninase of Phanerochaete chrysosporium Burdsall has no role in degradation of DDT. Appl Microbiol Biotechnol 29:618–620

    Article  Google Scholar 

  • Krivobok S (1994) Diversity in phenol metabolizing capabilities in 809 strains of micromycetes. Microbiology 17:51–60

    CAS  Google Scholar 

  • Lamar RT, Glaser JA, Evans JW (1993) Solid phase treatment of pentachlorophenol contaminated soil using lignin degrading fungi. Environ Sci Technol 27:2566–2571

    Article  CAS  Google Scholar 

  • Law WM, Lau WN, Lo KL, Wai LM, Chiu SW (2003) Removal of biocide pentachlorophenol in water system by the spent mushroom compost of Pleurotus pulmonarius. Chemosphere 52:1531–1537

    Article  PubMed  CAS  Google Scholar 

  • Leung PC, Ponting SB (2002) Effect of different carbon and nitrogen regimes on poly R decolourisation by white rot fungi. Mycol Res 72:219–226

    Google Scholar 

  • Liang H, Gao DW (2008) Enhanced biodecolorization of reactive dyes by immobilized Phanerochaete chrysosporium. J Biotechnol 136:S676

    Article  Google Scholar 

  • Marco-Urrea E, Parella T, Gabarrell X, Caminal G, Vicent T, Adinarayana Reddy C (2008) Mechanistics of trichloroethylene mineralization by the white rot fungus Trametes versicolor. Chemosphere 70:404–410

    Article  PubMed  CAS  Google Scholar 

  • Marquez-Rocha FJ, Hernandez-Rodriguez VZ, Vazquez-Duhalt R (2000) Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnol Lett 22:469–472

    Article  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Maarten D, Sollewijn G, Katherine J (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strainRP78. Nat Biotechnol 22:695–700

    Article  PubMed  CAS  Google Scholar 

  • Michels J, Gottschalk G (1994) Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-TNT. Appl Environ Microbiol 60:187–194

    PubMed  CAS  Google Scholar 

  • Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:2885–2889

    PubMed  CAS  Google Scholar 

  • Murialdo SE, Fenoglio R, Haure PM, Gonzalez JF (2003) Degradation of phenol and chlorophenols by mixed and pure cultures. Water SA 29:457–463

    CAS  Google Scholar 

  • Ollikka P, Alhonmaki K, Leppanen V-M, Glumoff T, Raijola T, Suominen I (1993) Decolorization of azo, triphenylmethane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59:4010–4016

    PubMed  CAS  Google Scholar 

  • Orth AB, Tien M (1995) Biotechnology of lignin degradation. In: Esser K, Lemke PA (eds) The mycota. II. Genetics and biotechnology. Springer, Berlin, pp 287–302

    Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  PubMed  CAS  Google Scholar 

  • Pozdnyakova NN, Nowak JR, Turkovskaya OV, Haber J (2006) Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzyme Microb Technol 39:1242–1249

    Article  CAS  Google Scholar 

  • Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Rieble S, Joshi DK, Gold M (1994) Aromatic nitroreductase from the basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 205:298–304

    Article  PubMed  CAS  Google Scholar 

  • Rigas F, Dritsa V, Marchant R, Papadopoulou K, Avramides EI, Hatzianestis I (2005) Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environ Int 31:191–196

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Aguilar GML, Fernandez-Sanchez JM, Rodriguez-Vazquez R, Poggi-Varaldo H (2002) Degradation by white rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv Environ Res 6:559–568

    Article  Google Scholar 

  • Sealey J, Ragauskas AJ (1998) Residual lignin studies of laccase delignified kraft pulps. Enzyme Microb Technol 23:422–426

    Article  CAS  Google Scholar 

  • Spiker JK, Crawford DL, Crawford RL (1992) Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:3199–3202

    PubMed  CAS  Google Scholar 

  • Srinivasan C, D’Souza TM, Boominathan K, Reddy CA (1995) Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 61:4274–4277

    PubMed  CAS  Google Scholar 

  • Suthersan S (1997) Remediation engineering design concepts. CRC Press, Boca Raton, FL

    Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Toby SB, Raymond LL (1992) Enhanced Bioremediation of Phenanthrene in Oil Tar-Contaminated Soils Supplemented with Phanerochaete chrysosporium. Appl Environ Microbiol 58(9):3117–3121

    Google Scholar 

  • Tuomela M, Lyytikainen M, Oivanen P, Hatakka A (1999) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white rot fungus Trametes versicolor. Soil Biol Biochem 31:65–74

    Article  CAS  Google Scholar 

  • Ullah MA, Evans CS (1999) Bioremediation of pentachlorophenol pollution by the fungus Coriolus versicolor. Land Contam Reclamat 7:255–260

    Google Scholar 

  • Vahabzadeh F, Mehranian M, Saatari AR (2004) Color removal ability of Phanerochaete chrysosporium in relation to lignin peroxidase and manganese peroxidase produced in molasses wastewater. World J Microbiol Biotechnol 20:859–864

    Article  CAS  Google Scholar 

  • Valli K, Wariishi H, Gold MH (1992) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174:2131–2137

    PubMed  CAS  Google Scholar 

  • Wang C, Xi JY, Hu HY, Wen XH (2008) Biodegradation of gaseous chlorobenzene by white rot fungus Phanerochaete chrysosporium. Biomed Environ Sci 21:474–478

    Article  PubMed  CAS  Google Scholar 

  • Wu YC, Luo YM, Zou DX, Ni JZ, Liu WX, Teng Y, Li ZG (2008) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation 19:247–257

    Article  PubMed  CAS  Google Scholar 

  • Yadav JS, Reddy CA (1993) Degradation of benzene, toluene, ethylbenzene and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762

    PubMed  CAS  Google Scholar 

  • Yadav JS, Quensen JF III, Tiedje JM, Reddy CA (1995) Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254 and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener specific analysis. Appl Environ Microbiol 61(7):2560–2565

    PubMed  CAS  Google Scholar 

  • Young RA, Akhtar M (eds) (1998) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York. ISBN 0-471-15770-8

    Google Scholar 

  • Zou SC, Zhang ZX (1998) The biodegradation of organochlorinated pesticides by P. chrysosporium fungi. Acta Scientiarum Naturalium Universitatis Sunyatseni 37:112–115 (in Chinese)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Fulekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fulekar, M.H., Pathak, B., Fulekar, J., Godambe, T. (2013). Bioremediation of Organic Pollutants Using Phanerochaete chrysosporium . In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_6

Download citation

Publish with us

Policies and ethics