Skip to main content

Degradation of Petroleum Pollutant Materials by Fungi

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

Oil spills are one of the main pollution in soil, groundwater, and marine environments. Recently, bioremediation is paid attention as one of the effective cleanup techniques to such oil pollution. In this chapter, we will describe basis of bioremediation and oil-degradation mechanism by microorganisms. In particular, we will focus on fungi that can be degraded to nonhazardous fractions and present the degradation of petroleum pollutant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken MD, Long TC (2004) Biotransformation, biodegradation, and bioremediation of polycyclic hydrocarbons. In: Singh A, Ward OP (eds) Biodegradation and bioremediation. Springer, Berlin, pp 83–124

    Chapter  Google Scholar 

  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–287

    Article  PubMed  CAS  Google Scholar 

  • Anderson FO, Helder H (1987) Comparison of oxygen micro-gradients, oxygen flux rates and electron system activity in coastal marine sediments. Mar Ecol Prog Ser 37:259–264

    Article  Google Scholar 

  • Aranda E, Marco-Urrea E, Caminal G, Arias ME, Garcia-Romera I, Guillen F (2010) Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor. J Hazard Mater 181:181–186

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    PubMed  CAS  Google Scholar 

  • Atlas RM (1988) Microbiology-fundamentals and applications, 2nd edn. Macmillan, New York, pp 352–353

    Google Scholar 

  • Atlas RM, Bartha R (1972) Biodegradation of petroleum in seawater at low temperatures. Can J Microbiol 18:1851–1855

    Article  PubMed  CAS  Google Scholar 

  • Aust SD (1990) Degradation of environmental pollutants. Microb Ecol 20:197–209

    Article  CAS  Google Scholar 

  • Bartha R, Atlas RM (1973) Biodegradation of oil in seawater: limiting factors and artificial stimulation. In: Ahern DG, Meyers SP (eds) The microbial degradation of oil pollutants. Centre for wetland resources, Louisiana State University, Baton Rouge, LA, pp 147–152

    Google Scholar 

  • Bazalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Apple Environ Microbiol 62:2554–2559

    Google Scholar 

  • Billinqsley KA, Backus SM, Ward OP (1999) Effect of surfactant solubilization on biodegradation of polychlorinated biphenyl congeners by Pseudomonas LB400. Appl Microbiol Biotechnol 52:255–260

    Article  Google Scholar 

  • Bogan BW, Lamar RT, Burgos WD, Tien M (1999) Extent of humification of anthracene, fluoranthene, and benzo (alpha) pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Lett Appl Microbiol 28:250–254

    Article  CAS  Google Scholar 

  • Bolliger C, Hohener P, Hekeler D, Haberli K, Zeyer J (1999) Intrinsic bioremediation of a petroleum hydrocarbon-contaminated aquifer and assessment of mineralization based on stable carbon isotopes. Biodegradation 10:201–217

    Article  PubMed  CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 434–476

    Google Scholar 

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 89–129

    Google Scholar 

  • Brown KW, Donnelly KC, Deuel LE (1983) Effects of mineral nutrients, sludge application rate, and application frequency on biodegradation of two oily sludges. Microb Ecol 9:363–373

    Article  CAS  Google Scholar 

  • Bumpus JA, Aust SD (1986) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. Bioessays 6:166–170

    Article  Google Scholar 

  • Bumpus JA, Tien M, Wright DS, Aust AD (1985) Oxidation of persistent environmental pollutants by white rot fungus. Science 228:1434–1436

    Article  PubMed  CAS  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330

    Article  PubMed  CAS  Google Scholar 

  • Casillas RP, Crow SA, Heinze TM, Deck J, Cerniglia CE (1996) Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol 16:205–215

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE, Perry JJ (1973) Hydrocarbon utilization by Cladosporium resinae. In: Ahern DG, Meyers SP (eds) The microbial degradation of oil pollutants. Centre for Wetland Resources, Louisiana State University, Baton Rouge, pp 25–32

    Google Scholar 

  • Cerniglia CE, Freeman JP, Mitchum RK (1982) Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl Environ Microbiol 43:1070–1075

    PubMed  CAS  Google Scholar 

  • Cerniglia CE, Kelly DW, Freeman JP, Miller DW (1986) Microbiol metabolism of pyrene. Chem Biol Interact 57:203–216

    Article  PubMed  CAS  Google Scholar 

  • Colores GM, Macur RE, Ward DM, Inskeep WP (2000) Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil. Appl Environ Microbiol 66:2959–2964

    Article  PubMed  CAS  Google Scholar 

  • Dean SM, Jin Y, Cha DK, Wilson SV, Radosevich M (2001) Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. J Environ Qual 30:1126–1133

    Article  PubMed  CAS  Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739

    PubMed  CAS  Google Scholar 

  • Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64

    Article  PubMed  CAS  Google Scholar 

  • Finnerty WR (1977) The biochemistry of microbial alkane oxidation: new insights and perspectives. Trends Biochem Sci 2:73–75

    Article  CAS  Google Scholar 

  • Frankenberger WT (1992) The need for a laboratory feasibility study in bioremediation of petroleum hydrocarbons. In: Calabrese EJ, Kostecki PT (eds) Hydrocarbon contaminated soils and groundwater, vol 2. Lewis, Boca Raton, FL, pp 237–293

    Google Scholar 

  • Garon D, Sage L, Seigle-Murandi F (2004) Effect of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry. Biodegradation 15:1–8

    Article  PubMed  CAS  Google Scholar 

  • Gold MH, Youngs HL, Gelpke MD (2000) Manganese peroxidase. Met Ions Biol Syst 37:559–586

    PubMed  CAS  Google Scholar 

  • Hammel KE (1992) Oxidation of aromatic pollutants by lignindegrading fungi and their extracellular peroxidases. Met Ions Biol Sys 28:41–60

    CAS  Google Scholar 

  • Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  PubMed  CAS  Google Scholar 

  • Heinfling A, Ruiz-Duenas FJ, Martinez MJ, Bergbauer M, Szewzyk U, Martinez AT (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–146

    Article  PubMed  CAS  Google Scholar 

  • Huddleston RL, Bleckmann CA, Wolfe JR (1984) Land treatment biological degradation processes. In: Loehr RC, Malina JF (eds) Land treatment: a hazardous waste management alternative. Water resources symposium, November 13, University of Texas at Austin, pp 41–61

    Google Scholar 

  • Huesemann MH, Truex MJ (1996) The role of oxygen diffusion in passive bioremediation of petroleum contaminated soil. J Hazard Mater 51:93–113

    Article  CAS  Google Scholar 

  • Hupe K, Heerenklage J, Stegmann R (1999) Influence of oxygen on the degradation of TPH contaminated soils. In: Alleman BC, Leeson A (eds) Bioreactor and ex situ biological treatment technologies. Battelle, Columbus, OH, pp 31–36

    Google Scholar 

  • Hurst CJ, Sims RC, Sims JL, Sorensen DL, McLean JE, Huling S (1997) Soil gas oxygen tension and pentachlorophenol biodegradation. J Environ Eng 123(4):364–370

    Article  CAS  Google Scholar 

  • Jensen KAJ, Bao W, Kawai S, Srebotnik E, Hammel KE (1996) Manganese-dependent cleavage of nonphenolic lignin structures by Ceriporiopsis subvermispora in the absence of lignin peroxidase. Appl Environ Microbiol 62:3679–3686

    PubMed  CAS  Google Scholar 

  • Kotterman MJJ, Vis EH, Field JA (1998) Successive mineralization and detoxification of benzo [α] pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl Environ Microbiol 64:2853–2858

    PubMed  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    PubMed  CAS  Google Scholar 

  • Leeson A, Hinchee RE (1997) Soil bioventing: principles and practice. Lewis, Boca Raton, FL

    Google Scholar 

  • Lovanh N, Hunt CS, Alvarez PJ (2002) Effect of ethanol on BTEX biodegradation kinetics: aerobic continuous culture experiments. Water Res 36:3739–3746

    Article  PubMed  CAS  Google Scholar 

  • Maurer M, Rittmann BE (2004) Formulation of the CBC-model for modeling the contaminants and footprints in natural attenuation of BTEX. Biodegradation 15:419–434

    Article  PubMed  CAS  Google Scholar 

  • May SW, Katoposis AG (1990) Hydrocarbon monooxygenase system of Pseudomonas oleovorans. Methods Enzymol 188:3–9

    Article  PubMed  CAS  Google Scholar 

  • Meulenberg R, Rijnaarts HHM, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons shown an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49

    Article  PubMed  CAS  Google Scholar 

  • Mohn WW, Radziminski CZ, Fortin MC, Reimer KJ (2001) On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl Microbiol Biotechnol 57:242–247

    Article  PubMed  CAS  Google Scholar 

  • Morgan P, Watkinson RJ (1989) Hydrocarbon degradation in soils and method for soil biotreatment. Crit Rev Microbiol 8:305–333

    CAS  Google Scholar 

  • Mougin C (2002) Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycycl Aromat Comp 22:1–33

    Article  Google Scholar 

  • Oh YS, Choi SC, Kim YK (1998) Degradation of gaseous BTEX biofiltration with Phanerochaete chrysosporium. J Microbiol 36:34–38

    CAS  Google Scholar 

  • Perez J, Munoz-Dorado J, De La Rubia RT, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicelluloses and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  CAS  Google Scholar 

  • Picado A, Nogueira A, Baeta-Hall L, Mendonca E, de Fatima Rodrigues M, do Ceu Saagua M, Martis A, Anselmo AM (2001) Landfarming in a PAH-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 36:1579–1588

    Article  PubMed  CAS  Google Scholar 

  • Pogni R, Baratto MC, Giansanti S, Teutloff C, Verdin J, Valderrama B, Lendzian F, Lubitz W, Vazquez-Duhalt R, Basosi R (2005) Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 44:4267–4274

    Article  PubMed  CAS  Google Scholar 

  • Pollard SJT, Hrudey SE, Fredorak PM (1994) Bioremediation of petroleum- and creosote-contaminated soils: a review of constraints. Waste Manage Res 12:173–194

    CAS  Google Scholar 

  • Pothuluri JV, Evans FE, Heinze TM, Cerniglia CE (1996) Formation of sulfate and glucoside conjugates of benzo [e] pyrene by Cunninghamella elegans. Appl Microbiol Biotechnol 45:677–683

    Article  CAS  Google Scholar 

  • Prenafeta-Boldu FX, Vervoort J, Grotenhuis JTC, van Groenestijn JW (2002) Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Apple Environ Microbiol 68:2660–2665

    Article  CAS  Google Scholar 

  • Prenafeta-Boldu FX, Ballerstedt H, Gerritse J, Grotenhuis JTC (2004) Bioremediation of BTEX hydrocarbons: effect of soil inoculation with toluene-growing fungus Cladophialophora sp. strain T1. Biodegradation 15:59–65

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Wilkes H, Schramm A, Harms G, Behrends A, Amann R, Widdle F (1999) Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the beta-subclass of proteobacteria. Environ Microbiol 1:145–157

    Article  PubMed  CAS  Google Scholar 

  • Rama R, Sigoillot JC, Chaplain V, Asther M, Jolivalt C, Mougin C (2001) Inoculation of filamentous fungi in manufactured gas plant site soils and PAH transformation. Polycycl Aromat Comp 18:397–414

    Article  CAS  Google Scholar 

  • Roger CP (2005) Metabolic indicators of anaerobic hydrocarbon biodegradation in petroleum-laden environments. In: Bernard O, Michel M (eds) Petroleum microbiology. American Society for Microbiology Press, Washington, DC, pp 317–336

    Google Scholar 

  • Sack U, Heinze T, Deck MJ, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63:3919–3925

    PubMed  CAS  Google Scholar 

  • Schoefs O, Perrier M, Dochain D, Samson R (2003) On-line estimation of biodegradation in an unsaturated soil. Bioprocess Biosyst Eng 26:37–48

    Article  PubMed  CAS  Google Scholar 

  • Sei K, Asano K, Tateishi N, Mori K, Ike M, Fujita M (1999) Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. J Biosci Bioeng 88:542–550

    Article  PubMed  CAS  Google Scholar 

  • Shiaris MP (1989) Seasonal biotransformation of naphthalene, phenanthrene, and benzo [a] pyrene in surficial estuarine sediments. Appl Environ Microbiol 55:1391–1399

    PubMed  CAS  Google Scholar 

  • Smits TH, Rothlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1:307–317

    Article  PubMed  CAS  Google Scholar 

  • Tortella GR, Diez MC (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212

    Article  PubMed  CAS  Google Scholar 

  • Tsai JC, Kumar M, Lin JG (2009) Anaerobic biotransformation of fluorine and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. J Hazard Mater 164:847–855

    Article  PubMed  CAS  Google Scholar 

  • Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2006) Verification of degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain WatG in soil microcosms. Curr Microbiol 52:182–185

    Article  PubMed  CAS  Google Scholar 

  • Van HJ, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  Google Scholar 

  • Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359

    PubMed  CAS  Google Scholar 

  • Whiteley CG, Lee DJ (2006) Enzyme technology and biological remediation. Enzyme Microb Technol 38:291–316

    Article  CAS  Google Scholar 

  • Yadav JS, Reddy CA (1993) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by lignin-degrading basidiomycetes Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762

    PubMed  CAS  Google Scholar 

  • Ye JS, Yin H, Qianq J, Penq H, Qin HM, Zhanq N, He BY (2011) Biodegradation of anthracene by Aspergillus fumigates. J Hazad Mater 15:174–181

    Article  Google Scholar 

  • Zheng Z, Obbard JP (2002) Polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization and Phanerochaete chrysosporium oxidation. J Environ Qual 31:1842–1847

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroo Uchiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hara, E., Uchiyama, H. (2013). Degradation of Petroleum Pollutant Materials by Fungi. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_5

Download citation

Publish with us

Policies and ethics