Skip to main content

Sustainable Agriculture in Saline-Arid and Semiarid by Use Potential of AM Fungi on Mitigates NaCl Effects

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

In many arid and semiarid areas of the world which sustainability of agriculture is limited by salinity, AM fungi are a key component of sustainable plant production. AM fungi plant responses to salt stress include an array of changes at the molecular, biochemical, and physiological levels. This chapter reviews briefly the mechanism on which salt affects crop and responses of plant to salinity stress, with emphasis on the mechanism on which AM fungi ameliorate the deleterious effects of salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El Baki BGK, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser WM (2000) Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ 23:515–521

    Article  CAS  Google Scholar 

  • Abdelbaki GK, Siefritz F, Man HM, Welner H, Kaldenhoff R, Kaiser WM (2000) Nitrate reductase in Zea mays L under salinity. Plant Cell Environ 23:15–521

    Article  Google Scholar 

  • Ahmad P, Jhon R (2005) Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Arch Agron Soil Sci 51:665–672

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7

    Article  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:41–47

    Article  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Bumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Aronson JA (1985) Economic halophytes: a global view. In: Wickens GE, Gooding JR, Field DV (eds) Plants for arid lands. George Allen and Unwin, London, pp 177–188

    Chapter  Google Scholar 

  • Ashraf M (1989) The effect of NaCl on water relations, chlorophyll and protein and proline contents of two cultivars of blackgram (Vigna mungo L.). Plant Soil 129:205–210

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1987) Rose leaf elasticity changes in response to mycorrhizal colonization and drought acclimation. Physiol Plant 70:175–182

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68:1–24

    Article  Google Scholar 

  • Bacilio M, Rodríguez H, Moreno M, Hernández JP, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40:188–193

    Article  CAS  Google Scholar 

  • Ball MC, Farquhar GD (1984) Photosynthetic and stomatal responses of two mangrove species, Avicennia marina and Aegiceras corniculatum, to long term salinity and humidity conditions. Plant Physiol 1:1–6

    Article  Google Scholar 

  • Bandeoglu E, Eyidogan F, Yucel M, Oktem HA (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77

    Article  CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  CAS  Google Scholar 

  • Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of vertisols. Plant Soil 218:173–183

    Article  CAS  Google Scholar 

  • Behboudian MH, Torokfalvy E, Walker RR (1986) Effects of salinity on ionic content, water relations and gas exchange parameters in some citrus scion rootstock combinations. Sci Hortic 28:105–116

    Article  CAS  Google Scholar 

  • Belkhodja R, Morales F, Abadia A, Gomez-Aparisi J, Abadia J (1994) Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol 104:667–673

    PubMed  CAS  Google Scholar 

  • Ben Khaled L, Gomez AM, Ouarraqi EM, Oihabi A (2003) Physiological and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings (Trifolium alexandrinum L.). Agronomie 23:571–580

    Article  CAS  Google Scholar 

  • Ben-Gal A, Borochov-Neori H, Yermiyahu U, Shani U (2009) Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity? Environ Exp Bot 65:232–237

    Article  CAS  Google Scholar 

  • Bernstein L (1975) Effects of salinity and sodicity on plant growth. Annu Rev Phytopathol 13:295–312

    Article  Google Scholar 

  • Bongi G, Loreto F (1989) Gas exchange properties of salt-stressed olive (Olea europaea L.) leaves. Plant Physiol 90:1408–1416

    Article  PubMed  CAS  Google Scholar 

  • Botella MA, Martinez V, Pardines J, Cerda A (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 150:200–205

    Article  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:300–313

    Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Caravaca F, Figueroa D, Barea JM, Azcón-Aguilar C, Roldán A (2004) Effect of mycorrhizal inoculation on the nutrient content, gas exchange and nitrate reductase activity of Retama sphaerocarpa and Olea europaea subsp. sylvestris under drought stress. J Plant Nutr 27:57–74

    Article  CAS  Google Scholar 

  • Caravaca F, Alguacil MM, Torres P, Roldán A (2005) Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma 124:375–382

    Article  CAS  Google Scholar 

  • Cerda A, Martinez V (1988) Nitrogen fertilization under saline conditions in tomato and cucumber plants. J Hortic Sci 63:451–458

    Google Scholar 

  • Chen N, Liu Y, Liu X, Chai J, Hu Z, Guo G, Liu H (2009) Enhanced tolerance to water deficit and salinity stress in transgenic Lycium barbarum L. plants ectopically expressing ATHK1, an Arabidopsis thaliana histidine kinase gene. Plant Mol Biol Rep 27:321–333

    Article  CAS  Google Scholar 

  • Cho K, Toler H, Lee J, Owenley B, Stutz JC, Moore JL, Augé RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    Article  PubMed  CAS  Google Scholar 

  • Chow WS, Ball MC, Anderson JM (1990) Growth and photosynthetic responses of spinach to salinity: implication of K nutrition for salt tolerance. Aust J Plant Physiol 17:563–578

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    Article  CAS  Google Scholar 

  • Copeman RH, Martin CA, Stutz JC (1996) Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils. HortScience 31:341–344

    Google Scholar 

  • Cramer GR (2002a) Deferential effects of salinity on leaf elongation kinetics of three grass species. Plant Soil 253:233–244

    Article  Google Scholar 

  • Cramer GR (2002b) Sodium–calcium interactions under salinity stress. In: Läuchli A, Luttge U (eds) Salinity: environment, plants, molecules. Kluwer, Dordrecht, pp 205–227

    Google Scholar 

  • Cramer MD, Lips SH (1995) Enriched rhizosphere CO2 concentration can ameliorate the influence of salinity on hydroponically grown tomato plants. Plant Physiol 94:425–433

    Article  CAS  Google Scholar 

  • Cusido RM, Papazon J, Altabella T, Morales C (1987) Effects of salinity on soluble protein, free amino acids and nicotine contents in Nicotiana rustica L. Plant Soil 102:55–60

    Article  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107

    Article  PubMed  CAS  Google Scholar 

  • Demir Y, Kocakalikan I (2002) Effect of NaCl and proline on bean seedlings cultured in vitro. Biol Plant 45:597–599

    Article  CAS  Google Scholar 

  • Devitt D, Jarrell WM, Steven KL (1981) Sodium–potassium ratios in soil solution and plant response under saline conditions. Soil Sci Soc Am J 34:80–86

    Article  Google Scholar 

  • Downton WJS (1977) Photosynthesis in salt stressed grapevines. Aust Plant Physiol 4:183–192

    Article  CAS  Google Scholar 

  • Duke ER, Johnson CR, Koch KE (1986) Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590

    Article  CAS  Google Scholar 

  • Ehsanpour AA, Amini F (2003) Effect of salt and drought stress on acid phosphatase activities in alfalfa (Medicago sativa L.) explants under in vitro culture. Afr J Biotechnol 2:133–135

    CAS  Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  PubMed  CAS  Google Scholar 

  • Francois LE, Donovan TJ, Maas EV (1990) Salinity effects on emergence, vegetative growth and seed yield of guar. Agron J 82:587–591

    Article  CAS  Google Scholar 

  • Gadkar V, Rillig M (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263:93–101

    Article  PubMed  CAS  Google Scholar 

  • Ghazi N, Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7

    Article  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues volume. Microb Ecol 54:753–760

    Article  PubMed  CAS  Google Scholar 

  • Glenn EP, O’Leary JW (1985) Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran Desert. J Arid Environ 9:81–91

    Google Scholar 

  • Goas G, Goas M, Larher F (1982) Accumulation of free proline and glycine betaine in Aster tripolium subjected to a saline shock: a kinetic study related to light period. Physiol Plant 55:383–388

    Article  CAS  Google Scholar 

  • Goicoechea N, Merino S, Sánchez-Díaz M (2005) Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. J Plant Physiol 162:27–35

    Article  PubMed  CAS  Google Scholar 

  • Goss MJ, de Varennes A (2002) Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol Biochem 34:1167–1173

    Article  CAS  Google Scholar 

  • Graifenberg A, Giustiniani L, Temperini O, Lipucci di Paola M (1995) Allocation of Na, Cl, K and Ca within plant tissues in globe artichoke (Cynara scolymus L.) under saline-sodic conditions. Sci Hortic 63:1–10

    Article  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1992) Mineral element acquisition and growth response of plants grown in saline environments. Agric Ecosyst Environ 38:275–300

    Article  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Greenland DJ (1984) Exploited plants: rice. Biologist 31:291–325

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hajlaoui H, Ayeb NE, Garrec JP, Denden M (2010) Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Ind Crops Prod 31:122–130

    Article  CAS  Google Scholar 

  • Hamdy A (1990a) Management practices under saline water irrigation. In Symposium on Scheduling of Irrigation for Vegetable Crops Under Field Conditions. Acta Hortic 278:745–754

    Google Scholar 

  • Hamdy A (1990b) Saline irrigation practices: leaching management. In: Proceedings of the water and wastewater ‘90’ conference, Barcelona, 10 pp

    Google Scholar 

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2010) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129

    Article  PubMed  CAS  Google Scholar 

  • Hernández JA, Aguilar A, Portillo B, López-Gómez E, Mataix Beneyto J, García-Legaz MF (2003) The effect of calcium on the antioxidant enzymes from salt treated loquat and anger plants. Funct Plant Biol 30:1127–1137

    Article  Google Scholar 

  • Hirrel MC (1981) The effect of sodium and chloride salts on the germination of Gigaspora margarita. Mycology 43:610–617

    Article  Google Scholar 

  • Hu Y, Schmidhalter U (2002) Limitation of salt stress to plant growth. In: Hock B, Elstner CF (eds) Plant toxicology. Marcel Dekker, New York, pp 91–224

    Google Scholar 

  • Jackson WA, Volk RJ (1997) Role of potassium in photosynthesis and respiration. In: Madison WS (ed) The role of potassium in agriculture. American Society of Agronomy, Madison, WI, pp 109–188

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120:373–379

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jimenez JS, Debouck DG, Lynch JP (2003) Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions. Field Crop Res 80:207–222

    Article  Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Singh R (1993) Effect of vesicular–arbuscular mycorrhizae on metabolism of moong plants under NaCl Salinity. Plant Physiol Biochem 3:475–481

    Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Kabir ME, Karim MA, Azad MAK (2004) Effect of potassium on salinity tolerance of mung bean (Vigna radiata L. Wilczek). J Biol Sci 4:103–110

    Article  Google Scholar 

  • Katembe WJ, Ungar IA, Mitchell J (1998) Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae). Ann Bot 82:167–175

    Article  Google Scholar 

  • Kaya C, Kirnak H, Higgs D (2001) Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. J Plant Nutr 24:357–367

    Article  CAS  Google Scholar 

  • Kaya C, Higgs D, Sakar E (2002) Response of two leafy vegetables grown at high salinity to supplementary potassium and phosphorus during different growth stages. J Plant Nutr 25:2663–2676

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Levent Tuna A, Cullu AM (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6

    Article  CAS  Google Scholar 

  • Kim SY, Lim JH, ParkMR KYJ, Park TII, Seo YW, Choi KG, Yun SJ (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under salt stress. J Biochem Mol Biol 38:218–224

    Article  PubMed  CAS  Google Scholar 

  • Kinraide TB (1999) Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J Exp Bot 50:1495–1505

    CAS  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldána A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Roldán A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    Article  CAS  Google Scholar 

  • Kramer D (1983) Genetically determined adaptations in roots to nutritional stress: correlation of structure and function. Plant Soil 72:167–173

    Article  CAS  Google Scholar 

  • Kumar A, Sharma S, Mishra S (2009) Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul 29:297–306

    Article  CAS  Google Scholar 

  • Lacuesta M, Gonzalez-Maro B, Gonzale-Murua C, Munoz-Rueda A (1990) Temporal study of the effect of phosphinothricin on the activity of glutamine synthetase, glutamate dehydrogenase and nitrate reductase in Medicago sativa L. Plant Physiol 136:410–414

    Article  CAS  Google Scholar 

  • Lax A, Díaz E, Castillo V, Albaladejo J (1994) Reclamation of physical and chemical properties of a salinized soil by organic amendment. Arid Soil Res Rehabil 8:9–17

    CAS  Google Scholar 

  • Loreto F, Centritto M, Chartzoulakis K (2002) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ 26:495–601

    Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Magistad OC, Ayers AD, Wadleigh CH, Gauch HG (1943) Effect of salt concentration, kind of salt, and climate on plant growth in sand cultures. Plant Physiol 18:151–166

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä P, Kärkkäinen J, Somersalo S (2000) Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plant 43:471–475

    Article  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Maritinez V, Cerda A (1989) Nitrate reductase activity in tomato and cucumber leaves as influenced by NaCl and N source. J Plant Nutr 12:1335–1350

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Martínez V, Lauchli A (1991) Phosphorus translocation in salt-stressed cotton. Physiol Plant 83:627–632

    Article  Google Scholar 

  • Martínez V, Bernstein N, Läuchli A (1996) Salt-induced inhibition of phosphorus transport in lettuce plants. Physiol Plant 97:118–122

    Article  Google Scholar 

  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular–arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: molecular biology and physiology. Kluwer, Dordrecht, pp 3–18

    Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Mukerji KG, Chamol BP (2003) Compendium of mycorrhizal research. A. P. H., New Delhi, 310 pp

    Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160

    Article  Google Scholar 

  • Muralev E, Nazarenko PI, Poplavskij VM, Kuznetsov IA (1997) Seawater desalination. In: Nuclear desalinization of seawater. Proceedings of a symposium in Taejon, Republic of Korea. International Atomic Energy Agency, Vienna, pp 355–366

    Google Scholar 

  • Naidoo G, Naidoo Y (2001) Effects of salinity and nitrogen on growth, ion relations and proline accumulation in Triglochin bulbosa. Wetlands Ecol Manage 9:491–497

    Article  CAS  Google Scholar 

  • Neto ADA, Prisco JT, Gomes-Filho E (2009) Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes. J Plant Interact 4:137–144

    Article  CAS  Google Scholar 

  • Neumann PM, Van Volkenburgn E, Cleland RE (1988) Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility. Plant Physiol 85:233–237

    Article  Google Scholar 

  • Nieman RH (1965) Expansion of bean leaves and its suppression by salinity. Plant Physiol 40:156–161

    Article  PubMed  CAS  Google Scholar 

  • Ober ES, Sharp RE (1994) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials (I. Requirement for increased levels of abscisic acid). Plant Physiol 105:981–987

    PubMed  CAS  Google Scholar 

  • Okçu G, Kaya MD, Atak M (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L). Turk J Agric Forest 29:237–242

    Google Scholar 

  • Olmos E, Hellin E (1997) Cytochemical localization of ATPase plasma membrane and acid phosphatase by cerium based in a salt-adapted cell line of Pisum sativum. J Exp Bot 48:1529–1535

    CAS  Google Scholar 

  • Papadopoulos I, Rendig VV (1983) Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant Soil 73:47–57

    Article  CAS  Google Scholar 

  • Pardossi A, Bagnoli G, Malorgio F, Campiotti CA, Tognoni F (1999) NaCl effects on celery (Apium graveolens L.) grown in NFT. Sci Hort 81:229–242

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove (Bruguiera parviflora). Trees 18:167–174

    Article  CAS  Google Scholar 

  • Pérez-Alfocea F, Balibrea ME, Santa Cruz A, Estan MT (1996) Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180:251–257

    Article  Google Scholar 

  • Pfeiffer CM, Bloss HE (1988) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular–arbuscular mycorrhiza and phosphorus fertilization. New Phytol 108:315–321

    Article  Google Scholar 

  • Plenchette C, Duponnois R (2005) Growth response of the saltbush Atriplex nummularia L. to inoculation with the arbuscular mycorrhizal fungus Glomus intraradices. J Arid Environ 61:535–540

    Article  Google Scholar 

  • Porras-Soriano A, Soriano-Martıń ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  PubMed  CAS  Google Scholar 

  • Poss JA, Pond E, Menge JA, Jarrell WM (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88:307–319

    Article  CAS  Google Scholar 

  • Powell CL (1975) Potassium uptake by endotrophic mycorrhizas (Griselinia littoralis, Glomus microcarpus, Fungi). In: Endomycorrhizas; Proceedings of a symposium, pp 461–468

    Google Scholar 

  • Pujol JA, Calvo JF, Ramirez-Diaz L (2000) Recovery of germination from different osmotic conditions by four halophytes from Southeastern Spain. Ann Bot 85:279–286

    Article  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521

    Article  Google Scholar 

  • Rabie GH (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mung bean plants to irrigation with seawater. Mycorrhiza 15:225–230

    Article  PubMed  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Rao DLN (1998) Biological amelioration of salt-affected soils. In: Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry, vol 1. Science Publishers, Enfield, CT, pp 21–238

    Google Scholar 

  • Ravikovitch S, Porath A (1967) The effect of nutrients on the salt tolerance of crops. Plant Soil 26:49–71

    Article  CAS  Google Scholar 

  • Reid RJ, Smith FA (2000) The limits of sodium/calcium interactions in plant growth. Aust J Plant Physiol 27:709–715

    CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil quality. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rinaldelli E, Mancuso S (1996) Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. I. Short-term electrophysiological and long term vegetative salt effects. Adv Hortic Sci 10:126–134

    Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot 31:313–318

    Article  Google Scholar 

  • Ruíz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  Google Scholar 

  • Ruíz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  Google Scholar 

  • Ruíz-Lozano JM, Azcón R, Gómez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    Article  Google Scholar 

  • Rush DW, Epstein E (1978) Genotypic response to salinity difference between salt-sensitive and salt tolerance genotypes of tomato. Plant Physiol 57:162–166

    Article  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Albertó EO, Menéndez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Shannon MC (1984) Breeding, selection, and the genetics of salt tolerance. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 231–254

    Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  PubMed  CAS  Google Scholar 

  • Sharma KD, Datta KS, Verma SK (1990) Effect of chloride and sulphate type of salinity on some metabolic drifts in chickpea (Cicer arietinum L). Indian J Exp Biol 28:890–892

    CAS  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430

    Article  PubMed  Google Scholar 

  • Shenker M, Bell GA, Shani U (2003) Sweet corn response to combined nitrogen and salinity environmental stresses. Plant Soil 256:139–147

    Article  CAS  Google Scholar 

  • Shi LX, Guo JX (2006) Changes in photosynthetic and growth characteristics of Leymus chinensis community along the retrogression on the Songnen grassland in northeastern China. Photosynthetica 44:542–547

    Article  Google Scholar 

  • Sibole JV, Montero E, Cabot C, Poschenrieder C, Barceló J (2000) Relationship between carbon partitioning and Na+, Cl- and ABA allocation in fruits of salt-stressed bean. J Plant Physiol 157:637–642

    Article  CAS  Google Scholar 

  • Singh G, Jain S (1982) Effect of some growth regulators on certain biochemical parameters during seed development in chickpea under salinity. Indian J Plant Physiol 25:167–179

    CAS  Google Scholar 

  • Singh RP, Choudhary A, Gulati A, Dahiya HC, Jaiwal PK, Sengar RS (1997) Response of plants to salinity in interaction with other abiotic and factors. In: Jaiwal PK, Singh RP, Gulati A (eds) Strategies for improving salt tolerance in higher plants. Science, Enfield, CT, pp 25–39

    Google Scholar 

  • Sivritepe N, Sivritepe HO, Eris A (2003) The effects of NaCl priming on salt tolerance in melon seedlings rown under saline conditions. Sci Hortic 97:229–237

    Article  CAS  Google Scholar 

  • Stephen MG, Duff SMG, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  Google Scholar 

  • Stewart CR, Lee JA (1974) The rate of proline accumulation in halophytes. Planta 120:279–289

    Article  CAS  Google Scholar 

  • Sudhakar C, Reddy PS, Veeranjaneyulu K (1993) Effect of salt stress on the enzymes of proline synthesis and oxidation in greengram (Phaseolus aureus Roxb.) seedlings. J Plant Physiol 14:621–623

    Article  Google Scholar 

  • Tabatabaei SJ (2006) Effects of salinity and N on the growth, photosynthesis and N status of olive (Olea europaea L.) trees. Sci Hortic 108:432–438

    Article  CAS  Google Scholar 

  • Tabatabaei SJ, Gregory P, Hadley P (2004) Uneven distribution of nutrients in the root zone affects the incidence of blossom end rot and concentration of calcium and potassium in fruits of tomato. Plant Soil 258:169–178

    Article  Google Scholar 

  • Tattini M (1994) Ionic relations of aeroponically-grown olive plants during salt stress. Plant Soil 161:251–256

    Article  Google Scholar 

  • Tester M, Davenport R (2003) Na tolerance and Na transport in higher plants. Ann Bot (Lond) 91:503–527

    Article  CAS  Google Scholar 

  • Thomas HM, Morgan WG, Humphreys MW (2003) Designing grasses with a future-combining the attributes of Lolium and Festuca. Euphytica 133:19–26

    Article  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1990) Mycorrhizas formed by Gigaspora calospora and Glomus fasciculatum on subterranean clover in relation to soluble carbohydrate concentrations in roots. New Phytol 114:217–225

    Article  CAS  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Tsang A, Maum MA (1999) Mycorrhizal fungi increase salt tolerance of Strophostyles helvola in coastal foredunes. Plant Ecol 144:159–166

    Article  Google Scholar 

  • United States Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. US Department of Agriculture, Agricultural Handbook No. 60. US Government Printer, Washington, DC

    Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–585

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A, Buyer JS (1998) Comparison of N linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biol Biochem 30:1853–1857

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, He XH (2009) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

    Article  CAS  Google Scholar 

  • Wyn Jones RG, Gorham J (1983) Osmoregulation. In: Lange OL, Noble PS, Osmond CB, Zeiger H (eds) Physiological plant ecology. III. Responses to chemical and biological environments. Springer, Berlin, pp 35–56

    Chapter  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition of plants. Adv Agron 68:97–150

    Article  CAS  Google Scholar 

  • Yang CW, Xu HH, Wang LL, Liu J, Shi DC, Wang GD (2009) Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica 47:79–86

    Article  CAS  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agriculture. Ecosyst Environ 95:343–348

    Article  Google Scholar 

  • Yeo AR, Yeo ME, Flowers SA, Flowers TJ (1990) Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor Appl Genet 79:377–384

    Article  Google Scholar 

  • Yermiyahu U, Nir S, Ben-Hayyim G, Kafkafi U, Kinraide TB (1997) Root elongation in saline solution related to calcium binding to root cell plasma membranes. Plant Soil 191:67–76

    Article  CAS  Google Scholar 

  • Zarea MJ (2010) Conservation tillage and Sustainable Agriculture in Semi-arid Dryland Farming. In: Lichtfouse E (ed) Biodiversity, biofules, agroforestry and conservation agriculture. Springer, Dordrecht, pp 195–232, 375 pp

    Chapter  Google Scholar 

  • Zhongoun H, Chaoxing H, Zhibin Z, Zhirong Z, Huaisong W (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59:128–133

    Article  CAS  Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Liu JP, Xiong LM (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1192

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Zarea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zarea, M.J., Goltapeh, E.M., Karimi, N., Varma, A. (2013). Sustainable Agriculture in Saline-Arid and Semiarid by Use Potential of AM Fungi on Mitigates NaCl Effects. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_15

Download citation

Publish with us

Policies and ethics