Skip to main content

Mycoremediation of Heavy Metals

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

The accumulation of heavy metals in agricultural soils is of increasing concern due to the food safety issues and potential health risks as well as its detrimental effects on soil ecosystems. Sources of these elements in soils mainly include natural occurrence derived from parent materials and human activities. Microbial biomass is both a source and sink for nutrients in the soil. It participates in the C, N, P, and S transformations and plays an active role in the degradation of xenobiotic organic compounds. It also helps in the mobilization and immobilization of heavy metals and participates in the formation of soil structure. Microorganisms have the ability to bind metals from aqueous solution. This phenomenon is known as biosorption, and the microorganisms responsible for the process are considered biosorbents. A wide variety of living and dead biomass of bacteria, algae, fungi, and plants is capable of sequestering toxic metals. The fungal biomass used in mycosorption is termed mycosorbent. Mycosorption is a topic of great interest for researchers all over the world. Biosorption consists of several mechanisms that differ according to the fungal species used, the origin of the biomass, and its processing. Arbuscular mycorrhizal fungi (Glomeromycota) are ubiquitous soil microbes considered essential for the survival and growth of plants in nutrient-deficient soils. They are frequently seen as a tolerance mechanism of plants in highly metal-polluted soils. Mycorrhizas constitute a bridge for nutrient transport from soils to plant roots. At higher soil metal levels, AMF are expected to reduce soil metal bioavailability since metals are sequestered in extraradical hyphae, therefore resulting in lower metal uptake in AM than non-AM plants. A range of environmental factors including soil metal concentrations and their bioavailability, soil absorption/desorption characteristics, as well as endogenous factors (e.g., the fungal properties and inherent heavy metal uptake capacity of plants) may influence the uptake of metals by mycorrhizal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggangan NS, Dell B, Malajczuk N (1998) Effects of chromium and nickel on growth of the ectomycorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S.T. Blake. Geoderma 84:15–27

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Akmal M, Xu JM, Li ZJ, Wang HZ, Yao HY (2005a) Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60:508–514

    Article  CAS  Google Scholar 

  • Akmal M, Wang HZ, Wu JJ, Xu JM, Xu DF (2005b) Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution. J Environ Sci 17:802–807

    CAS  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen MF (2001) Modelling arbuscular mycorrhizal infection: is percent infection an appropriate variable? Mycorrhiza 10:255–258

    Article  Google Scholar 

  • Alloway BJ (1995) Cadmium. In: Alloway BJ (ed) Heavy metals in soils. Blackie, Glasgow, pp 122–151

    Chapter  Google Scholar 

  • Amann R, Anaidr J, Wagner M, Ludwig W, Schleifer KH (1996) In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500

    PubMed  CAS  Google Scholar 

  • Aruguete DH, Aldstadt JH, Mueller GM (1998) Accumulation of several heavy metals and lanthanides in mushrooms (Agaricales) from the Chicago region. Sci Total Environ 224:43–56

    Article  CAS  Google Scholar 

  • Ashkenazy R, Gottlieb L, Yannai S (1997) Characterization of acetone washed yeast biomass functional groups involved in lead biosorption. Biotechnol Bioeng 55:1–10

    Article  PubMed  CAS  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta analytical and conceptual perspectives. Environ Pollut 147:609–614

    Article  PubMed  CAS  Google Scholar 

  • Bai RS, Abraham TE (2002) Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res 36:1224–1236

    Article  PubMed  CAS  Google Scholar 

  • Berthelsen BO, Olsen RA, Steinnes E (1995) Ectomycorrhizal heavy metal accumulation as a contributing factor to heavy metal levels in organic surface soils. Sci Total Environ 170:141–149

    Article  CAS  Google Scholar 

  • Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1117

    PubMed  CAS  Google Scholar 

  • Brooks RR (1998) General introduction. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB, Wallingford, pp 1–14

    Google Scholar 

  • Bruce F, Moffett FA, Nicholson NC, Uwakwe BJ, Chambers JAH, Tom CJH (2003) Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol Ecol 43:13–19

    Article  Google Scholar 

  • Cairney JWG, Meharg AA (1999) Influences of anthropogenic pollution on mycorrhizal fungal communities. Environ Pollut 106:169–182

    Article  PubMed  CAS  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44

    Article  PubMed  CAS  Google Scholar 

  • Chappelka AH, Kush JS, Runion GB, Meier S, Kelly WD (1991) Effects of soil-applied lead on seedling growth and ectomycorrhizal colonisation of Loblolly pine. Environ Pollut 72:307–316

    Article  PubMed  CAS  Google Scholar 

  • Chen BD, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  PubMed  CAS  Google Scholar 

  • Colpaert JV, Van Tichelen KK (1996) Mycorrhizas and environmental stress. In: Frankland J (ed) Fungi and environmental change. Cambridge University Press, Cambridge, pp 109–128

    Chapter  Google Scholar 

  • Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J (2000) Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol 147:367–379

    Article  CAS  Google Scholar 

  • Crichton RR (1991) Inorganic biochemistry of iron metabolism. Ellis Horwood, Chichester

    Google Scholar 

  • Cruz C, Green JJ, Watson CA, Wilson F, Martins-Loucao MA (2004) Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14:177–184

    Article  PubMed  CAS  Google Scholar 

  • D’Enfert C, Minet M, Lacroute F (1995) Cloning plant genes by complementation of yeast mutants. Methods Cell Biol 49:417–430

    Article  PubMed  Google Scholar 

  • Dahlberg A (1999) Somatic incompatibility in ectomycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Berlin, pp 111–132

    Google Scholar 

  • Dalal PC (1998) Soil microbial biomass: what do the numbers really mean? Aust J Exp Agric 38:649–665

    Article  Google Scholar 

  • Dehn B, Schüepp H (1989) Influence of VA mycorrhizae on the uptake and distribution of heavy metals in plants. Agric Ecosyst Environ 29:79–83

    Article  Google Scholar 

  • Denny HJ, Ridge I (1995) Fungal slime and its role in the mycorrhizal amelioration of zinc toxicity to higher plants. New Phytol 130:251–257

    Article  CAS  Google Scholar 

  • Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol 106:545–554

    CAS  Google Scholar 

  • Dighton J, Jansen AE (1991) Atmospheric pollutants and ectomycorrhizae: more questions than answers. Environ Pollut 73:179–204

    Article  PubMed  CAS  Google Scholar 

  • Dixon RK, Buschena CA (1988) Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105:265–271

    Article  CAS  Google Scholar 

  • Doelman P, Jansen E, Michels M, Van-Til M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecological relevant parameter. Biol Fertil Soils 17:177–184

    Article  CAS  Google Scholar 

  • Fitter AH, Merryweather JW (1992) Why are some plants more mycorrhizal than others? An ecological enquiry. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CABI, Wallington, pp 26–36

    Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Franz A, Burgstaller W, Schinner F (1991) Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Appl Environ Microbiol 57:769–774

    PubMed  CAS  Google Scholar 

  • Freedman B, Hutchinson TC (1980) Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Can J Bot 58:108–132

    CAS  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1993) Phospholipids fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  CAS  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1996) Changes in microbial community structure during long term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28:55–63

    Article  CAS  Google Scholar 

  • Gadd GM (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316

    Article  CAS  Google Scholar 

  • Gadd GM (2001) Metal transformations. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 359–382

    Chapter  Google Scholar 

  • Galli U, Meier M, Brunold C (1993) Effects of cadmium on nonmycorrhizal and mycorrhizal Norway spruce seedlings and its ectomycorrhizal fungus Laccaria laccata Bk and Br: sulfate reduction, thiols and distribution of the heavy metal. New Phytol 125:837–843

    Article  CAS  Google Scholar 

  • Galli U, Schuepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368

    Article  CAS  Google Scholar 

  • Gardea-Torresdey J, Cano-Aguilera I, Webb R, Tiemann KJ, Gutierrez-Corona F (1996) Copper adsorption by inactivated cells of Mucor rouxii: effect of esterification of carboxyl groups. J Hazard Mater 48:171–180

    Article  CAS  Google Scholar 

  • Gaur G, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol 95:247–261

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez C (2000) Arbuscular mycorrhizal fungi from As/Cu polluted soils, contribution to plant tolerance and importance of external mycelium. Ph.D dissertation, University of Reading, UK

    Google Scholar 

  • Gonzalez-Chavez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171

    Article  CAS  Google Scholar 

  • González-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero M, Azcon-Aguilar C, Ferrol N (2006) GintABC1 and GintMT1 are involved in Cu and Cd homeostasis in Glomus intraradices. In: Abstracts of the 5th international conference of mycorrhiza, Granada

    Google Scholar 

  • Gorobets S, Gorobets O, Ukrainetz A, Kasatkina T, Goyko I (2004) Intensification of the process of copper ions by yeast of Saccharomyces cerevisiae 1968 by means of a permanent magnetic field. J Magn Magn Mater 272–276:2413–2414

    Article  CAS  Google Scholar 

  • Green F, Clausen CA (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int Biodeterior Biodegrad 51:145–149

    Article  CAS  Google Scholar 

  • Grellier B, Strullu DG, Martin F, Renaudin S (1989) Synthesis in-vitro microanalysis and phosphorus-31 NMR study of metachromatic granules in birch mycorrhizas. New Phytol 112:49–54

    Article  CAS  Google Scholar 

  • Griffioen WAJ (1994) Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza 4:197–200

    Article  CAS  Google Scholar 

  • Gruhn CM, Miller JR (1991) Effect of Cu on tyrosinase activity and polyamine content of some ectomycorrhizal fungi. Mycol Res 95:268–272

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 366:1–11

    Article  Google Scholar 

  • Hartley J (1997) Effects of heavy metal pollution on Scots pine (Pinus sylvestris L.) and its ectomycorrhizal symbionts. Ph.D dissertation, University of Leeds, Leeds

    Google Scholar 

  • Haselwandter K, Berreck M, Brunner P (1988) Fungi as bioindicators of radiocaesium contamination: pre-and post-Chernobyl activities. Trans Br Mycol Soc 90:171–174

    Article  CAS  Google Scholar 

  • Hattori H (1992) Influence of heavy metals on soil microbial activities. Soil Sci Plant Nutr 38:93–100

    Article  CAS  Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular–arbuscular mycorrhizal fungi on heavy metals uptake by soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Figge DAH (1994) The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoils. Environ Pollut 86:171–179

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  PubMed  CAS  Google Scholar 

  • Howe R, Evans RL, Ketteridge SW (1997) Copper-binding proteins in ectomycorrhizal fungi. New Phytol 135:123–131

    Article  CAS  Google Scholar 

  • Humar M, Bokan M, Amartey SA, Sentjurc M, Kalan P, Pohleven F (2004) Fungal bioremediation of copper, chromium and boron treated wood as studied by electron paramagnetic resonance. Int Biodeterior Biodegrad 53:25–42

    Article  CAS  Google Scholar 

  • Iestwaart JH, Griffioen WAJ, Ernst WHO (1992) Seasonality of VAM infection in three populations of Agrostis capillaris (Gramineae) on soil with or without heavy metal enrichment. Plant Soil 139:67–73

    Article  Google Scholar 

  • Jarosz-Wilkolazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Leyval C (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, Boca Raton, FL, pp 165–185

    Google Scholar 

  • Joner E, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Knight BP, McGrath SP, Chaudri AM (1997) Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Appl Environ Microbiol 63:39–43

    PubMed  CAS  Google Scholar 

  • Kong FX, Liu Y, Hu W, Shen PP, Zhou CL, Wang LS (2000) Biochemical responses of the mycorrhizae in Pinus massoniana to combined effects of Al, Ca and low pH. Chemosphere 40:311–318

    Article  PubMed  CAS  Google Scholar 

  • Konopka A, Bercot T, Nakatsu C (1999) Bacterioplankton community diversity in a serious of thermally stratified lakes. Microb Ecol 38:126–135

    Article  PubMed  Google Scholar 

  • Kottke I, Qian XM, Pritsch K, Haug I, Oberwinkler F (1998) Xerocomus badius–Picea abies, an ectomycorrhiza of high activity and element storage capacity in acidic soil. Mycorrhiza 7:267–275

    Article  Google Scholar 

  • Kozdroj J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417

    Article  CAS  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  PubMed  CAS  Google Scholar 

  • Lemke PA, Singh NK, Temann UA (1999) Genetic transformation in ectomycorrhizal fungi. In: Varma A, Hock B (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Berlin, pp 133–152

    Google Scholar 

  • Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, Boca Raton, FL, pp 165–185

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function, physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Li XL, Christie P (2001) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42:201–207

    Article  PubMed  CAS  Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    Article  PubMed  CAS  Google Scholar 

  • Malcova R, Vosatka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices in lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:55–67

    Article  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  PubMed  CAS  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993

    Article  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000a) Ectomycorrhizas: extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32:1475–1484

    Article  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000b) Co-evolution of mycorrhizal symbionts and their hosts to metal contaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  • Michelot D, Siobud E, Dore JC, Viel C, Poirier F (1998) Update on metal content profiles in mushrooms: toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon 36:1997–2012

    Article  PubMed  CAS  Google Scholar 

  • Mogollon L, Rodriguez R, Larrota W, Ramirez N, Torres R (1998) Biosorption of nickel using filamentous fungi. Appl Biochem Biotechnol 70–72:593–601

    Article  Google Scholar 

  • Moore AEP, Massicotte HB, Peterson RL (1989) Ectomycorrhiza formation between Eucalyptus pilularis Sm. and Hydnangium carneum Wallr. in Dietr. New Phytol 112:193–204

    Article  Google Scholar 

  • Morselt AFW, Smits WTM, Limonard T (1986) Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant Soil 96:417–420

    Article  CAS  Google Scholar 

  • Muller AK, Westergaard K, Christensen S, Sorensen SJ (2001) The effect of long term mercury pollution on the soil microbial community. FEMS Microbiol Ecol 36:11–19

    Article  PubMed  CAS  Google Scholar 

  • Murugesan GS, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97:483–487

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 1–34

    Google Scholar 

  • Nordgren A, Baath E, Soderstrom B (1983) Microfungi and microbial activity along a heavy metal gradient. Appl Environ Microbiol 45:1829–1837

    PubMed  CAS  Google Scholar 

  • Ohya H, Komai Y, Yamaguchi M (1985) Zinc effects on soil microflora and glucose metabolites in soil amended with 14C-glucose. Biol Fertil Soils 1:117–122

    Article  CAS  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Article  PubMed  CAS  Google Scholar 

  • Paknikar KM, Puranik PR, Agate AD, Naik SR (1998) Metal biosorbents from waste fungal biomass: a new bioremedial material for control of heavy metal pollution. In: Sikdar SK, Irvine RT (eds) Bioremediation: principles and practices, bioremediation technologies, vol III. Technomic, Lancaster, PA, pp 557–576

    Google Scholar 

  • Park D, Yun YS, Jo JH, Park JM (2005) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39:533–540

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy metal stress and developmental patterns in arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Blaszkowski J, Ruhling A (1996) The mycorrhizal status of plants colonising a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Article  Google Scholar 

  • Pawlowska TE, Chaney RL, Chin M, Charavat I (2000) Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Appl Environ Microbiol 66:2526–2530

    Article  PubMed  CAS  Google Scholar 

  • Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British Flora. New Phytol 125:843–854

    Article  Google Scholar 

  • Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449–458

    Article  PubMed  Google Scholar 

  • Pierleoni R, Buffalini M, Vallorani L (2004) Tuber borchii fruit body: 2-dimensional profile and protein identification. Phytochemistry 65:813–820

    Article  PubMed  CAS  Google Scholar 

  • Reber HH (1992) Simultaneous estimates of the diversity and the degradative capability of heavy-metal-affected soil bacterial communities. Biol Fertil Soils 13:181–186

    CAS  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal contaminates soils, Nato science series: IV: Earth and environmental sciences. Springer, Heidelberg, pp 25–52

    Chapter  Google Scholar 

  • Regvar M, Groznik N, Goljevšček N, Gogala N (2001) Diversity of arbuscular mycorrhizal fungi at various differentially managed ecosystems in Slovenia. Acta Biol Sloven 44:27–34

    Google Scholar 

  • Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F (2006) Vegetational and mycorrhizal successions at a metal polluted site: indications for the direction of phytostabilisation? Environ Pollut 144:976–984

    Article  PubMed  CAS  Google Scholar 

  • Ross DS, Sjogren RE, Bartlett RJ (1981) Behavior of chromium in soils: IV. Toxicity to microorganisms. J Environ Qual 10:145–148

    Article  CAS  Google Scholar 

  • Sayer JA, Raggett SL, Gadd GM (1995) Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol Res 99:987–993

    Article  CAS  Google Scholar 

  • Schreferl G, Kubicek CP, Rohr M (1986) Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase. J Bacteriol 165:1019–1022

    PubMed  CAS  Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Selosse MA, Martin F, Bouchard D, le Tacon F (1999) Structure and dynamics of experimentally introduced and naturally occurring Laccaria sp. discrete genotypes in a Douglas fir plantation. Appl Environ Microbiol 65:2006–2016

    PubMed  CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2001) Arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 151:265–270

    Article  CAS  Google Scholar 

  • Siegel SM, Galun M, Siegel BZ (1990) Filamentous fungi as metal biosorbents: a review. Water Air Soil Pollut 53:335–344

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Suh JH, Kim DS, Yun JW, Song SK (1998) Process of Pb2+ accumulation in Saccharomyces cerevisiae. Biotechnol Lett 20:153–156

    Article  CAS  Google Scholar 

  • Sukla LB, Kar RN, Panchanadikar V (1992) Leaching of copper converter slag with Aspergillus niger culture filtrate. Biometals 5:169–172

    Article  CAS  Google Scholar 

  • Taboski MAS, Rand TG, Piorko A (2005) Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. FEMS Microbiol Ecol 53:445–453

    Article  PubMed  CAS  Google Scholar 

  • Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    Article  PubMed  CAS  Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT (1992) Bioremediation of soils contaminated with selenium. In: Lal R, Stewart BA (eds) Advances in soil science, vol 17. Springer, New York, pp 261–309

    Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT, Longley KE (1991) Removal of selenium from agricultural drainage water through soil microbial transformations. In: Dinar A, Zilberman D (eds) The economics and management of water and drainage in agriculture. Kluwer, New York, pp 169–186

    Chapter  Google Scholar 

  • Tobin JM (2001) Fungal metal biosorption. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 424–444

    Chapter  Google Scholar 

  • Tobin JM, Roux JC (1998) Mucor biosorbent for chromium removal from tanning effluent. Water Res 32:1407–1416

    Article  CAS  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    Article  CAS  Google Scholar 

  • Trappe JM (1996) What is a mycorrhiza? In: Proceedings of the fourth European symposium on mycorrhiza, EC Report EUR 16728, Granada, pp 3–9

    Google Scholar 

  • Turnau K (1998) Heavy metal content and localisation in mycorrhizal Euphorbia cyparissias from zinc wastes in southern Poland. Acta Soc Bot Pol 67:105–113

    CAS  Google Scholar 

  • Turnau K, Kottke I, Oberwinkler F (1993a) Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots with cadmium dust. New Phytol 123:313–324

    Article  CAS  Google Scholar 

  • Turnau K, Kottke I, Oberwinkler F (1993b) Paxillus involutus–Pinus sylvestris mycorrhizae from heavily polluted forest. I. Element localization using electron energy loss spectroscopy and imaging. Bot Acta 106:213–219

    CAS  Google Scholar 

  • Turnau K, Miszalski Z, Trouvelot A, Bonfante P, Gianinazzi S (1996a) Oxalis acetosella as a monitoring plant on highly polluted soils. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems, from genes to plant development. Proceedings of the fourth European symposium on mycorrhizas (COST edition). European Commission, Brussels, Luxemburg, pp 483–486

    Google Scholar 

  • Turnau K, Kottke I, Dexheimer J (1996b) Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol Res 100:16–22

    Article  CAS  Google Scholar 

  • Ueda K, Kobayashi M, Takahashi E (1988) Effect of chromate and organic amendments on the composition and activity of the microorganisms flora in soil. Soil Sci Plant Nutr 34:233–240

    Article  CAS  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  CAS  Google Scholar 

  • Weiersbye IM, Straker CJ, Przybylowicz WJ (1999) Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nucl Instrum Method B 158:335–343

    Article  CAS  Google Scholar 

  • Wittekind E, Werner M, Reinicke A, Herbert A, Hansen P (1996) A microtiter plate urease inhibition assay-sensitive rapid and cost-effective screening for heavy metals in water. Environ Technol 17:597–603

    Article  Google Scholar 

  • Witter E (1992) Heavy metal concentrations in agricultural soils critical to microorganisms. Swedish Environmental Protection Agency Report 4079, Stockholm

    Google Scholar 

  • Yamamoto H, Tatsuyama K, Uchiwa T (1985) Fungal flora of soil polluted with copper. Soil Biol Biochem 17:785–790

    Article  CAS  Google Scholar 

  • Young JPW (1994) Sex and the single cell: the population ecology and genetics of microbes. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass: compositional and functional analyses of soil microbial communities. Wiley, Chichester, pp 101–107

    Google Scholar 

  • Zarb J, Walters DR (1995) Polyamine biosynthesis in the ectomycorrhizal fungus Paxillus involutus exposed to zinc. Lett Appl Microbiol 21:93–95

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY, Ma RX, Rackwitz R, Winter K, Beese F (1994) Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally-managed soils. Soil Biol Biochem 26:439–446

    Article  CAS  Google Scholar 

  • Zhang L, Zhao L, Yu Y, Chen C (1998) Removal of lead from aqueous solution by non-living Rhizopus nigricans. Water Res 32:1437–1444

    Article  CAS  Google Scholar 

  • Zhang D, Duine JA, Kawai F (2002) The extremely high Al resistance of Penicillium janthinellum F-13 is not caused by internal or external sequestration of Al. Biometals 15:167–174

    Article  PubMed  CAS  Google Scholar 

  • Zhu YG, Christie P, Laidlaw AS (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Rezaee Danesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Danesh, Y.R., Tajbakhsh, M., Goltapeh, E.M., Varma, A. (2013). Mycoremediation of Heavy Metals. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_11

Download citation

Publish with us

Policies and ethics