Skip to main content

An Introduction to Bioremediation

  • Chapter
  • First Online:
Book cover Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

With the rising population of the world and daily life demands supplied through industries and modern industrialized agricultural systems, the need for preservation of ecosystems is increasingly revealed. The repeated occurrence of the calamities such as wars, earthquakes, and tsunamis are additional reasons that necessitate further attention to the cleaning of the polluted and/disrupted ecosystems. One of the most economical and stable approaches to cope with this vital task is the use of the techniques developed through progresses in an interdisciplinary science, bioremediation. Bioremediation as a branch of environmental biotechnology takes advantage of various living organisms including bacteria, fungi, algae, and plants in order to remediate the contaminated ecosystems. Here in this introductory chapter, bioremediation and bioremediation techniques are introduced, and fungal bioremediation (mycoremediation) is paid in detail as the main introductory part to the remnant of the present book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaensen K, Vralstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284

    Article  PubMed  CAS  Google Scholar 

  • Ahearn DG, Meyers SP (1976) Fungal degradation of oil in the marine environment. In: Gareth Jones EB (ed) Recent advances in aquatic mycology. Elek, London, pp 127–130

    Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, Boston, MA

    Google Scholar 

  • Antizar-Ladislao B, Beck AJ, Spanova K, Lopez-Real J, Russell NJ (2007) The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting. J Hazard Mater 14:340–347

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B, Spanova K, Beck AJ, Russell NJ (2008) Microbial community structure changes during bioremediation of PAHs in an aged coal-tar contaminated soil by in-vessel composting. Int Biodeter Biodegr 61:357–364

    Article  CAS  Google Scholar 

  • Arjmand M, Sandermann H (1985) Mineralization of chloroaniline/lignin conjugates and of free chloroanilines by the white rot fungus Phanerochaete chrysosporium. J Agric Food Chem 33:1055–1060

    Article  CAS  Google Scholar 

  • Arjmand M, Sandermann H (1986) Plant biochemistry of xenobiotics. Mineralization of chloroaniline/lignin metabolites from wheat by the white rot fungus, Phanerochaete chrysosporium. Zeitschrift der Naturforschung 41c:206–214

    Google Scholar 

  • Askar AI, Ibrahim GH, Osman KA (2007) Biodegradation kinetics of bromoxynil as a pollution control technology. Egypt J Aquat Res 33:111–121

    Google Scholar 

  • Atagana H, Haynes R, Wallis F (2003) The use of surfactants as possible enhancers in bioremediation of creosote contaminated soil. Water Air Soil Pollut 142:137–149

    Article  CAS  Google Scholar 

  • Aust SD, Swaner PR, Stahl JD (2003) Detoxification and metabolism of chemicals by white-rot fungi. In: Zhu JJPC, Aust SD, Lemley Gan AT (eds) Pesticide decontamination and detoxification. Oxford University Press, Washington, D.C, pp 3–14

    Chapter  Google Scholar 

  • Baarschers WH, Heitland HS (1986) Biodegradation of fenitrothion and fenitrooxon by the fungus Trichoderma viride. J Agric Food Chem 34:707–709

    Article  CAS  Google Scholar 

  • Baggott J (1993) Biodegradable lubricants. A paper presented at the Institute of Petroleum Symposium: “Life cycle analysis and eco-assessment in the oil industry,” Nov. 1992. Shell, England

    Google Scholar 

  • Baker K, Herson D (1994) Bioremediation. McGraw-Hill, New York

    Google Scholar 

  • Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–266

    Article  PubMed  CAS  Google Scholar 

  • Bogan BW, Lamar RT (1999) Surfactant enhancement of white-rot fungal PAH soil remediation. In: Leason A, Allman BC (eds) Phytoremediation and innovative strategies for specialized remedial applications. The fifth international in situ and on-site bioremediation symposium, San Diego, CA, 19–22 Apr 1999. Battelle, Columbus, OH, pp 81–86

    Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1981) Mycorrhizal infection and resistance to heavy metals. Nature 292:335–337

    Article  CAS  Google Scholar 

  • Bradley B, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–209

    Article  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    PubMed  CAS  Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium. Bioessays 6:166–170

    Article  CAS  Google Scholar 

  • Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungus, Phanerochaete chrysosporium. Appl Environ Microbiol 54:1143–1150

    PubMed  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  PubMed  CAS  Google Scholar 

  • Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740

    Article  Google Scholar 

  • Canet R, Birnstingl J, Malcolm D, Lopez-Real J, Beck A (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white rot fungi in a coal-tar contaminated soil. Bioresour Technol 76:113–117

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry GR (1994) Biological degradation and bioremediation of toxic chemicals. Dioscorides, Portland, OR, 515 p

    Google Scholar 

  • Chen BD, Jakobsen I, Roos P, Zhu YG (2005a) Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil 275:349–359

    Article  CAS  Google Scholar 

  • Chen BD, Zhu YG, Zhang XH, Jakobsen I (2005b) The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Environ Sci Pollut Res Int 12:325–331

    Article  PubMed  CAS  Google Scholar 

  • Christie P, Li XL, Chen BD (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    Article  CAS  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1116

    PubMed  CAS  Google Scholar 

  • Davis JB, Westlake DWS (1979) Crude oil utilization by fungi. Can J Microbiol 25:146–156

    Article  CAS  Google Scholar 

  • Davis MW, Glaser JA, Evans JW, Lamar RT (1993) Field evaluation of the lignin-degrading fungus Phanerochaete sordida to treat creosote-contaminated soil. Environ Sci Technol 27:2572–2576

    Article  CAS  Google Scholar 

  • De Freitas AL, de Moura GF, de Lima MAB, de Souza PM, da Silva CAA, de Campos GMT, do Nascimento AE (2011) Role of the morphology and polyphosphate in Trichoderma harzianum related to cadmium removal. Molecules 16:2486–2500

    Article  CAS  Google Scholar 

  • Déziel E, Comeau Y, Villemur R (1999) Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation 10:219–233

    Article  PubMed  Google Scholar 

  • Dritsa V, Rigas F, Avramides EJ, Hatzianestis I (2005) Biodegradation of lindane in liquid cultures by the polypore fungus Ganoderma australe. In: 3rd European bioremediation conference, Chania

    Google Scholar 

  • Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium, a ligninolytic fungus. Enzyme Microb Technol 7:194–196

    CAS  Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production – Pleurotus ostreatus – for bioremediation of creosote contaminated soil. Int Biodeter Biodegr 44:117–126

    Article  CAS  Google Scholar 

  • Eggen T, Majcherczyk A (1998) Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white rot fungus Pleurotus ostreatus. Int Biodeter Biodegr 41:111–117

    Article  CAS  Google Scholar 

  • Eggen T, Sveum P (1999) Decontamination of aged creosote polluted soil: the influence of temperature, white rot fungus Pleurotus ostreatus, and pretreatment. Int Biodeter Biodegr 43:125–133

    Article  CAS  Google Scholar 

  • Fernando J, Bampus JA, Aust SD (1990) Biodegradation of TNT (2, 4, 6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671

    PubMed  CAS  Google Scholar 

  • Fomina MA, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366

    Article  CAS  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alexander IJ, Gadd GM (2006) Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb Ecol 52:322–333

    Article  PubMed  CAS  Google Scholar 

  • Fomina M, Podgorsky VS, Olishevska SV, Kadoshnikov VM, Pisanska IR, Hillier S, Gadd GM (2007) Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol J 24:643–653

    Article  CAS  Google Scholar 

  • Fragoeiro SI de S (2005) The use of fungi in bioremediation of pesticides. PhD thesis, Applied Mycology Group Institute of Bioscience and Technology, Cranfield University, Cranfield

    Google Scholar 

  • Gadd GM (ed) (2001) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  PubMed  CAS  Google Scholar 

  • Ghahfarokhy MR, Goltapeh EM, Purjam E, Pakdaman BS, Modarres Sanavy SAM, Varma A (2011) Potential of mycorrhiza-like fungi and Trichoderma species in biocontrol of take-all disease of wheat under greenhouse condition. J Agric Technol 7:185–195

    Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  PubMed  CAS  Google Scholar 

  • Grodnitskaya ID, Sorokin ND (2006) Use of micromycetes Trichoderma for soil bioremediation in tree nurseries. Biol Bull 33:400–403

    Article  CAS  Google Scholar 

  • Hadibarata T, Tachibana S (2009) Microbial degradation of n-eicosane by filamentous fungi. In: Obayashi Y, Isobe T, Subramanian A, Suzuki S, Tanabe S (eds) Interdisciplinary studies on environmental chemistry – environmental research in Asia. Terrapub, Tokyo, pp 323–329

    Google Scholar 

  • Haemmerli SD, Liesola MSA, Sanglard D, Feichter A (1986) Oxidation of benzo(a)pyrene by extracellular ligninases from Phanerochaete chrysosporium. J Biol Chem 261:6900–6903

    PubMed  CAS  Google Scholar 

  • Haught RC, Neogy R, Vonderhaar SS, Krishnan ER, Safferman SI, Ryan J (1995) Land treatment alternatives for bioremediating wood preserving wastes. Hazard Waste Hazard Mater 12:329–344

    Article  CAS  Google Scholar 

  • Heggen T, Sveum P (1999) Decontamination of age creosote polluted soil: the influence of temperature, white rot fungus Pleurotus ostreatus, and pre-treatment. Int Biodeter Biodegr 43:125–133

    Article  Google Scholar 

  • Hestbjerg H, Willumsen P, Christensen M, Andersen O, Jacobsen C (2003) Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 22:692–698

    PubMed  CAS  Google Scholar 

  • Hickey RF, Smith G (1996) Biotechnology in industrial waste treatment and bioremediation. Lewis, New York

    Google Scholar 

  • Huttermann A, Trojanowski J, Loske D (1989) Process for the decomposition of complex aromatic substances in contaminated soils/refuse matter with microorganisms. German Patent DE3,731,816

    Google Scholar 

  • IETU (1999) Comprehensive report of remediation applications at an oil refinery in southern Poland. Report prepared for U.S. DOE, FETC

    Google Scholar 

  • Ivanov AI (1974) Effect of simazine on soil feeding conditions. Agrokhimiya 3:113–115

    Google Scholar 

  • Jones EBG (1976) Recent advances in aquatic mycology. Elek, London, 749p

    Google Scholar 

  • Kästner M, Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol 44:668–675

    Article  PubMed  Google Scholar 

  • Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065

    CAS  Google Scholar 

  • Kearney P, Wauchope R (1998) Disposal options based on properties of pesticides in soil and water. In: Kearney P, Roberts T (eds) Pesticide remediation in soils and water, Wiley series in agrochemicals and plant protection. Wiley, New York

    Google Scholar 

  • King RB, Gilbert ML, Sheldon JK (1992) Practical environmental bioremediation. Lewis, New York

    Google Scholar 

  • Kirk TK, Lamar RT, Glaser JA (1992) The potential of white-rot fungi in bioremediation. In: Mongkolsuk S, Lovett PS, Trempy JE (eds) Biotechnology and environmental science – molecular approaches. Proceedings of an international conference on biotechnology and environmental science: molecular approaches, Bangkok, 21–24 Aug 1990. Plenum, New York, pp 131–138

    Google Scholar 

  • Kodama T, Ding L, Yoshida M, Yajima M (2001) Biodegradation of a s-triazine herbicide, simazine. J Mol Catal B Enzym 11:1073–1078

    Article  CAS  Google Scholar 

  • Kohler A, Jager A, Willerhausen H, Graf H (1988) Extracellular ligninase of Phanerochaete chrysosporium Burdsall has no role in the degradation of DDT. Appl Microbiol Biotechnol 29:616–620

    Article  Google Scholar 

  • Krupa P, Kozdroj J (2004) Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J Microbiol Biotechnol 20:427–430

    Article  CAS  Google Scholar 

  • Lamar RT, Glaser JA, Kirk TK (1990) Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium: mineralization, volatilization and depletion of PCP. Soil Biol Biochem 22:433–440

    Article  CAS  Google Scholar 

  • Lang E, Nerud F, Zadrazil F (1998) Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influenced by soil microorganisms. FEMS Microbiol Lett 167:239–244

    Article  CAS  Google Scholar 

  • Lang E, Gonser A, Zadrazil F (2000) Influence of incubation temperature on activity of ligninolytic enzymes in sterile soil by Pleurotus sp. and Dichomitus sqalens. J Basic Microbiol 40:33–39

    Article  PubMed  CAS  Google Scholar 

  • Levin L, Viale A, Forchiassin A (2003) Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. Int Biodeter Biodegr 52:1–5

    Article  CAS  Google Scholar 

  • Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, Boca Raton, FL, pp 165–185

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lin J-E, Wang HY, Hickey RF (1990) Kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotechnol Bioeng 35:1125–1134

    Article  PubMed  CAS  Google Scholar 

  • Llanos C, Kjøller A (1976) Changes in the flora of soil fungi following oil waste application. Oikos 27:377–382

    Article  Google Scholar 

  • Mansur MME, Arias JL, Copa-Patino M, Flärdh M, González AE (2003) The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia 95:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74:381–389

    Article  CAS  Google Scholar 

  • Marin S, Sanchis V, Ramos A, Magan N (1998) Effect of water activity on hydrolytic enzyme production by Fusarium moniliforme and Fusarium proliferatum during colonisation of maise. Int J Food Microbiol 42:185–194

    Article  PubMed  CAS  Google Scholar 

  • Martens R, Zadrazil F (1998) Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol 43:97–103

    Article  CAS  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • Matsumura F, Boush GM (1966) Malathion degradation by Trichoderma viride and a Pseudomonas species. Science 153:1278–1280

    Article  PubMed  CAS  Google Scholar 

  • May R, Schröder P, Sandermann H Jr (1997) Ex-situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium. Environ Sci Technol 31:2626–2633

    Article  CAS  Google Scholar 

  • McFarland MJ, Qiu XJ, Sims JL, Randolph ME, Sims RC (1992) Remediation of petroleum impacted soils in fungal compost bioreactors. Water Sci Technol 25:197–206

    CAS  Google Scholar 

  • McGill WB, Nyborg M (1975) Reclamation of wet forest soils subjected to oil spills. Alberta Institute of Pedology, Edmonton, AB, Publ. no. G–75–1

    Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  • Mentzer E, Ebere D (1996) Remediation of hydrocarbon contaminated sites. A paper presented at 8th biennial international seminar on the petroleum industry and the Nigerian environment, November, Port Harcourt

    Google Scholar 

  • Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 55:2885–2889

    Google Scholar 

  • Mukherjee I, Gopal M (1996) Degradation of chlorpyrifos by two soil fungi Aspergillus niger and Trichoderma viride. Toxicol Environ Chem 57:145–151

    Article  CAS  Google Scholar 

  • Novotny C, Erbanova P, Sasek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10:159–168

    Article  PubMed  CAS  Google Scholar 

  • Obire O (1988) Studies on the biodegradation potentials of some microorganisms isolated from water systems of two petroleum producing areas in Nigeria. Niger J Bot 1:81–90

    Google Scholar 

  • Obire O, Anyanwu EC, Okigbo RN (2008) Saprophytic and crude oil-degrading fungi from cow dung and poultry droppings as bioremediating agents. Int J Agric Technol 4:81–89

    Google Scholar 

  • Office of Technology Assessment (OTA) (1990) Bioremediation of marine oil spill. Workshop. Government Printing Press, Washington, DC, vol 4, pp 1–30

    Google Scholar 

  • Okeke B, Smith J, Paterson A, Watson-Craik I (1996) Influence of environmental parameters on pentachlorophenol biotransformation in soil by Lentinula edodes and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 45:263–266

    Article  PubMed  CAS  Google Scholar 

  • Olivieri R, Robertiello A, Degen L (1978) Enhancement of microbial degradation of oil pollutants using lipophilic fertilizers. Mar Pollut Bull 9:217–220

    Article  CAS  Google Scholar 

  • Pakdaman BS, Goltapeh EM (2006) An in vitro study on the possibility of rapeseed white stem rot disease control through the application of prevalent herbicides and Trichoderma species. Pak J Biol Sci 10:7–12

    Google Scholar 

  • Pakdaman BS, Khabbaz H, Goltapeh EM, Afshari HA (2002) In vitro studies on the effects of sugar beet field prevalent herbicides on the beneficial and deleterious fungal species. Pak J Plant Pathol 1:23–24

    Article  Google Scholar 

  • Palizi P, Goltapeh EM, Pourjam E (2006) Nematicidal activity of culture filtrate of seven Pleurotus species on Pratylenchus vulnus. In: 17th Iranian plant protection congress, vol 2, p 457

    Google Scholar 

  • Palizi P, Goltapeh EM, Pourjam E, Safaie N (2007) The relationship of oyster mushrooms fatty acid profile and their nematicidal activity. In: 5th national biotechnology congress of Iran, p 762

    Google Scholar 

  • Palizi P, Goltapeh EM, Pourjam E, Safaie N (2009) Potential of oyster mushrooms for the biocontrol of sugar beet nematode (Heterodera schachtii). J Plant Prot Res 49:27–33

    Article  Google Scholar 

  • Philippoussis A, Diamantopoulou P, Euthimiadou H, Zervakis G (2001) The composition and porosity of lignocellulosic substrates influence mycelium growth and respiration rates of Lentinus edodes. Int J Med Mushrooms 3:198

    Article  Google Scholar 

  • Philippoussis A, Diamantopoulou P, Zervakis G (2002) Monitoring of mycelium growth and fructification of Lentinula edodes on several agricultural residues. In: Sanchez JE, Huerta G, Montiel E (eds) Mushroom biology and mushroom products. UAEM, Cuernavaca, pp 279–287

    Google Scholar 

  • Pletsch M, de Araujo B, Charlwood B (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17:679–687

    Article  PubMed  CAS  Google Scholar 

  • Prasad Shukla K, Kumar NS, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J GEBJ-3

    Google Scholar 

  • Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 140:325–332

    Article  PubMed  CAS  Google Scholar 

  • Rosen K, Zhong WL, Martensson A (2005) Arbuscular mycorrhizal fungi mediated uptake of Cs-137 in leek and ryegrass. Sci Total Environ 338:283–290

    Article  PubMed  CAS  Google Scholar 

  • Rufyikiri G, Huysmans L, Wannijn J, Van Hees M, Leyval C, Jakobsen I (2004) Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Environ Pollut 130:427–436

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Bumpus JA (1989) Biodegradation of 2, 4, 5-trichlorophenoxyacetic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 31:302–307

    Article  CAS  Google Scholar 

  • Sasikumar CS, Papinazath T (2003) Environmental management: bioremediation of polluted environment. In: Bunch MJ, Suresh VM, Kumaran TV (eds) Proceedings of the third international conference on environment and health, Chennai, India, 15–17 Dec 2003. Department of Geography, University of Madras and Faculty of Environmental Studies, York University, Chennai, pp 465–469

    Google Scholar 

  • Schoen S, Winterlin W (1987) The effects of various soil factors and amendments on the degradation of pesticide mixture. J Environ Sci Health 22:347–377

    Article  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Kuhad RC (2000) Degradation of insecticide lindane (γ-HCH) by white rot fungus Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56:142–146

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Stone RW, Fenske MR, White AGC (1942) Bacteria attacking petroleum and oil fractions. J Bacteriol 44:169–178

    PubMed  CAS  Google Scholar 

  • Tullio M, Pierandrei F, Salerno A, Rea E (2003) Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol Fertil Soils 37:211–214

    CAS  Google Scholar 

  • Ulfig K, Płaza G, Hazen TC, Fliermans CB, Franck MM, Lombard KH (1997). Bioremediation treatability and feasibility studies at a Polish petroleum refinery. In: Proceedings Warsaw ‘96, Florida State University Press

    Google Scholar 

  • Ulfig K, Płaza G, Lukasik K, Krajewska J, Mańko T, Wypych J, Dziewięcka B, Worsztynowicz A (1998) Selected filamentous fungi as bioindicators of leachate toxicity and bioremediation progress. In: National scientific-technical symposium “soil bioremediation”, Wisła-Bukowa

    Google Scholar 

  • Van der Lelie D, Schwitzguebel JP, Glass DJ, Vangronsveld J, Baker A (2001) Assessing phytoremediation’s progress in the United States and Europe. Environ Sci Technol 35:446A–452A

    Article  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Walker JD, Cofone L, Cooney JI (1973) Microbial petroleum degradation: the role of Cladosporium resinae on prevention and control of oil spills. In: API/EPA/USLG conference, Washington, DC

    Google Scholar 

  • Walsh JB (1999) A feasibility study of bioremediation in a highly organic soil. A thesis submitted to the faculty of the Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree of Master of Science in Environmental Engineering, May 1999

    Google Scholar 

  • Wischmann H, Steinhart H (1997) The formation of PAH oxidation products in soils and soil/compost mixtures. Chemosphere 35:1681–1698

    Article  CAS  Google Scholar 

  • Wu T, Crapper M (2009) Simulation of biopile processes using a hydraulics approach. J Hazard Mater 17:1103–1111

    Article  CAS  Google Scholar 

  • Zervakis G, Philippoussis A, Ioannidou S, Diamantopoulou P (2001) Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol 46:231–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Mohammadi Goltapeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sardrood, B.P., Goltapeh, E.M., Varma, A. (2013). An Introduction to Bioremediation. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_1

Download citation

Publish with us

Policies and ethics