Skip to main content

Piriformospora indica: Perspectives and Retrospectives

  • Chapter
  • First Online:
Piriformospora indica

Part of the book series: Soil Biology ((SOILBIOL,volume 33))

Abstract

Mycorrhizal fungi are relevant members of the rhizosphere mutualistic microsymbiont populations that provide a direct physical link between soil and plant roots to increase soil nutrient exploitation and transfer of minerals to the root due to symbiotic association with higher plants. These include several types such as external mantle or sheath forming ectomycorrhiza, ectendomycorrhiza, and the very popular endomycorrhiza or arbuscular mycorrhizal fungi (AMF). Piriformospora indica is an endophytic fungus that exhibits AM fungus-like properties and potentials. This chapter reviews the past and present status of P. indica, its taxonomical hierarchy, molecular characteristics, and diverse applications as biotization, biocontrol, plant probiotic, and plant growth-promoting agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achatz B, von Ruden S, Andrade D, Neumann E, Pons-Kühnemann J, Kogel KH, Franken P, Waller F (2010) Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil 33:59–70

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17

    Article  Google Scholar 

  • Arpana J, Bagyaraj DJ (2007) Response of Kalmegh to an arbuscular mycorrhizal fungus and a plant growth promoting rhizomicroorganism at two levels of phosphorus fertilizer. Am-Euras J Agric Environ Sci 2:33–38

    Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Hofte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defence. Mol Plant Microbe Interact 21:709–719

    Article  PubMed  CAS  Google Scholar 

  • Baldi A, Jain A, Gupta N, Srivastava AK, Bisaria VS (2008) Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett 30:1671–1677

    Article  PubMed  CAS  Google Scholar 

  • Baltruschat H, Fodor J, Hauuach BD, Niemczyk E, Barma B, Gullner G, Janeczko A, Kogel KH, Schafer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  PubMed  CAS  Google Scholar 

  • Banba M, Gutjahr C, Miyao A, Hirochika H, Paszkowski U, Kouchi H, Imaizumi-Anraku H (2008) Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway. Plant Cell Physiol 49:1659–1671

    Article  PubMed  CAS  Google Scholar 

  • Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–43

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Duckett JG (2010) Conservative ecological and evolutionary patterns in liverwort–fungal symbioses. Proc R Soc B 277:485–492

    Article  PubMed  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498

    Article  PubMed  CAS  Google Scholar 

  • Bougoure JJ, Bougoure DS, Cairney JW, Dearnaley JD (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460

    Article  PubMed  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, Oelmuller R (2010) Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol 185:1062–1073

    Article  PubMed  CAS  Google Scholar 

  • Cannon PF, Kirk PM (2007) Fungal families of the World. CABI, Wallingford, p 328

    Google Scholar 

  • De Mita S, Santoni S, Ronfort J, Bataillon T (2007) Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago. BMC Evol Biol 7:210. doi:10.1186/1471-2148-7-210, cited online at URL http://www.biomedcentral.com/1471-2148/7/210

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh S, Huckelhoven R, Schafer P, Imani J, Sharma M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457

    Article  PubMed  CAS  Google Scholar 

  • Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Buttner C, Grosch R, Schwarz D, Fanken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191–200

    Article  PubMed  Google Scholar 

  • Farkya S, Bisaria VS, Srivastava AK (2004) Biotechnological aspects of the production of the anticancer drug podophyllotoxin. Appl Microbiol Biotechnol 65:504–519

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Waller F, Molitor A, Kogel KH (2009) The mycorrhiza fungus Piriformospora indica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection. Mol Plant Microbe Interact 22:1179–1185

    Article  PubMed  CAS  Google Scholar 

  • Fries LLM, Pacovsky RS, Safir GR, Kaminski J (1998) Phosphorus effect on phosphatase activity in endomycorrhizal maize. Physiol Plantarum 103:162–171

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before Infection. Plant Cell 17:3489–3499

    Article  PubMed  CAS  Google Scholar 

  • Ghahfarokhi RM, Goltapeh ME (2010) Potential of the root endophytic fungus Piriformospora indica; Sebacina vermifera and Trichoderma species in biocontrol of take-all disease of wheat Gaeumannomyces graminis var. tritici in vitro, in Iran. J Agric Technol 6:11–18

    Google Scholar 

  • Gianinazzi-Pearson V, Sejalon-Delmas N, Genre A, Jeandroz S, Bonfante P (2007) Plants and arbuscular mycorrhizal fungi: cues and communication in the early steps of symbiotic interactions. Adv Bot Res 46:181–219

    Article  CAS  Google Scholar 

  • Gosal SK, Baddesha HS, Kalia A, Varma A (2008a) Role of endophytic fungus Piriformospora indica in nutrient acquisition and grain yield of maize in Phosphorus deficient soil under field conditions. J Environ Ecol 26:2172–2175

    CAS  Google Scholar 

  • Gosal SK, Chandi GK, Gosal SS, Varma A (2008b) Role of Piriformospora indica and Pseudomonas fluorescens as growth promoting agents in biotized micropropagated plants of Populus deltoids. Indian J Agroforestry 10:84–90

    Google Scholar 

  • Gosal SK, Bhatia P, Chawla JS, Chhibba IM, Varma A (2009) Biofortification of maize using symbiotic Fungi. In: Oral paper presented at 12th Punjab Science Congress held at Punjab Agricultural University Ludhiana, Punjab from February 7–9, 2009

    Google Scholar 

  • Gosal SK, Chandi GK, Gosal SS, Varma A (2010a) Biotization of micropropagated Aloe vera with Pseudomonas fluorescens and Piriformospora indica. J Med Arom Plant Sci 32:91–96

    Google Scholar 

  • Gosal SK, Kalrupia A, Gosal SS, Chhibba IM, Varma A (2010b) Biotization with P. indica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Indian J Biotechnol 9:289–297

    CAS  Google Scholar 

  • Gosal SK, Sharma M, Gosal SS, Chhibba IM, Bhatnagar K, Varma A (2011) Biohardening with Piriformospora indica improves survival rate, growth, iron uptake and cane yield of micropropagated sugarcane. Int Sugar J 113:382–88

    Google Scholar 

  • Gosal SK, Kumar L, Kalia A, Chauhan R, Varma A (2007) Comparative role of Piriformospora indica as biofertilizer for plant growth promotion and micronutrient acquisition activity on Dendrocalamus strictus seedlings. J Bamboo Rattan 6:223–228

    Google Scholar 

  • Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, Bonfante P (2009) Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol 183:53–61

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hata S, Kobae Y, Banba M (2010) Interactions between plants and arbuscular mycorrhizal fungi. Int Rev Cell Mol Biol 281:1–48

    Article  PubMed  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten-Lumbsch H, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hill TW, Kaefer E (2001) Improved protocols for aspergillus medium: trace elements and minimum medium salt stock solutions. Fungal Genet News Lett 48:20–21

    Google Scholar 

  • Hu J, Lin X, Wang J, Dai J, Cui X, Chen R, Zhang J (2009) Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): A field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biol Biochem 41:2460–2465

    Article  CAS  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayash M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    Article  PubMed  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertility Soils 37:1–16

    Google Scholar 

  • Kaldorf M, Koch B, Rexer KH, Kost G, Varma A (2005) Patterns of interaction between Populus Esch5 and Piriformospora indica: a transition from mutualism to antagonism. Plant Boil (Stuttg) 7:210–218

    Article  CAS  Google Scholar 

  • Kalia A, Gupta RP (2005) Proteomics: a paradigm shift. Crit Rev Biotechnol 25:173–198

    Article  PubMed  CAS  Google Scholar 

  • Kamienski F (1881) Die Vegetationsorgane der Monotropa hypopitys L. Botanische Zeitung 39:457–461

    Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA 103:359–364

    Article  PubMed  CAS  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford, UK, p 627

    Google Scholar 

  • Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmuller R, Cai D (2010) Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant Microbe Interact 23:446–457

    Article  PubMed  CAS  Google Scholar 

  • Kogel KH, Franken P, Huckelhoven R (2006) Endophyte or parasite-what decides? Curr Opin Plant Biol 9:358–63

    Article  PubMed  Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  PubMed  CAS  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  PubMed  CAS  Google Scholar 

  • Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    Article  PubMed  Google Scholar 

  • Kuhn H, Kuster H, Requena N (2009) Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol 185:716–133

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155:780–790

    Article  PubMed  CAS  Google Scholar 

  • Kumari R, Kishan H, Bhoon YK, Varma A (2003) Colonization of cruciferous plants by Piriformospora indica. Curr Sci 85:1672–1674

    Google Scholar 

  • Kumari R, Pham GH, Prasad R, Sachdev M, Srivastava A, Yadav V, Verma PK, Sharma S, Malla R, Singh A, Maurya AK, Prakash S, Pareek A, Rexer KH, Kost G, Garg AP, Oelmueller R, Sharma MC, Varma A (2004) Piriformospora indica: fungus of the millennium. In: Podila G, Varma A (eds) Basic research and applications: mycorrhizae. IK International-India/Kluwer academic, New York/Holland, pp 259–295

    Google Scholar 

  • Kuo CG, Huang RS (1982) Effect of vesicular-arbuscular mycorrhizae on the growth and yield of rice-stubble cultured soybeans. Plant Soil 64:325–330

    Article  Google Scholar 

  • Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. Am J Bot 94:1756–1777

    Article  PubMed  CAS  Google Scholar 

  • Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor- kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6(e68):0497–0506. doi:10.1371/journal.pbio.0060068

    CAS  Google Scholar 

  • Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46:169–172

    Article  CAS  Google Scholar 

  • Messinese E, Mun J, Yeun L, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono J, Cook D, Ané J (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium and calmodulin dependent protein kinase of Medicago truncatula. Mol Plant Microbe Interact 20:912–921

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655

    Article  PubMed  CAS  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) The arbuscular mycorrhizal fungus Glomus intraradices induces intracellular calcium changes in soybean cells. Caryologia 60:137–140

    Google Scholar 

  • Oelmuller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Article  CAS  Google Scholar 

  • Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 7:414–421

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370

    Article  PubMed  Google Scholar 

  • Peskan-Berghofer T, Shahollari B, Giang PH, Hehl S, Markert C, Blanke V, Varma AK, Oelmüller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122:465–477

    Article  CAS  Google Scholar 

  • Pham GH, Kumari R, Singh AN, Malla R, Prasad R, Sachdev M, Kaldorf M, Buscot F, Oelmuller R, Hampp R, Saxena AK, Rexer KH, Kost G, Varma A (2004) Axenic cultures of Piriformospora indica. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Germany, pp 593–613

    Google Scholar 

  • Prajapati K, Yami KD, Singh A (2008) Plant growth promotional effect of Azotobacter chroococcum, Piriformospora indica and vermicompost on rice plant. Nepal J Sci Technol 9:85–90

    Google Scholar 

  • Prasad R, Pham HG, Kumari R, Singh A, Yadav V, Sachdev M, Garg AP, Peskan T, Hehl S, Sherameti I, Oelmuller R, Varma A (2005) Sebacinaceae: culturable mycorrhiza-like endosymbiotic fungi and their interaction with non-transformed and transformed roots. In: Declerck S, Strullu DG, Fortin A (eds) In vitro culture of mycorrhizas, vol 4. Springer, Berlin, Heidelberg, pp 291–312

    Chapter  Google Scholar 

  • Rai MK, Singh A, Arya D, Varma A (2001) Positive growth responses of Withania somnifera and Spilanthes calva cultivated with Piriformospora indica in field. Mycorrhiza 11:123–128

    Article  Google Scholar 

  • Raj MK, Varma A, Pandey AK (2004) Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47:479–81

    Article  Google Scholar 

  • Ray JG, Valsalakumar N (2010) Arbuscular mycorrhizal fungi and Piriformospora indica individually and in combination with Rhizobium on green gram. J Plant Nutr 33:285–298

    Article  CAS  Google Scholar 

  • Reinhardt D (2007) Programming good relations- development of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 10:98–105

    Article  PubMed  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Sahay NS, Varma A (1999) Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol Lett 181:297–302

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Azamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie A, Parniske M, Hayashi M, Kawaguchi M (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbiosis and seed production in Lotus japonicus. Plant Cell 19:610–624

    Article  PubMed  CAS  Google Scholar 

  • Schafer P, Khatabi B, Kogel KH (2007) Root cell death and systemic effects of Piriformospora indica: a study on mutualism. FEMS Microbiol Lett 275:1–7

    Article  PubMed  CAS  Google Scholar 

  • Schafer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kuhnemann J, Sonnewald S, Sonnewald U, Kogel KH (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474

    Article  PubMed  CAS  Google Scholar 

  • Schafer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Kühnemann JP, Sonnewald S, Sonnewald U, Kogel KH (2009) Phytohormones in plant root-Piriformospora indica mutualism. Plant Signal Behav 4:669–671

    Article  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajim M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Selosse MA, Bauer R, Moyerson B (2002) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195

    Article  CAS  Google Scholar 

  • Setaro S, Weib M, Oberwinkler F, Kottke I (2006) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365

    Article  PubMed  CAS  Google Scholar 

  • Shahollari B, Vadasser J, Varma A, Oelmuller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50:1–13

    Article  PubMed  CAS  Google Scholar 

  • Shahollari B, Varma A, Oelmuller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–58

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Schmid M, Rothballer M, Hause G, Zuccaro A, Imani J, Kampfer P, Domann E, Schafer P, Hartmann A, Kogel KH (2008) Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Microbiol 10:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Shaw SL, Long SR (2003) Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol 131:976–984

    Article  PubMed  CAS  Google Scholar 

  • Shende S, Bhagwat K, Wadegaonkar P, Rai M, Varma A (2006) Piriformospora indica as a new and emerging mycofertilizer and biotizer: potentials and prospects in sustainable agriculture. In: Rai MK (ed) Handbook of microbial biofertilizers. Haworth Press, Inc, NY, pp 447–496

    Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  PubMed  CAS  Google Scholar 

  • Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmüller R (2008) PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 54:428–439

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shiozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Varma A (2000) Orchidaceous mycorrhizal fungi. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer/Plenum, New York, pp 265–288

    Chapter  Google Scholar 

  • Singh A, Singh A, Kumari M, Kumar S, Rai MK, Sharma AP, Varma A (2003) AMF-like-fungi: Piriformospora indica—a boon for plant industry. Biotechnology in sustainable biodiversity and food security. Proceedings of an International Conference, Kathmandu, Nepal, November 2000. In: Prasad BN (ed) Biotechnology in sustainable biodiversity and food security. Science Publishers Inc., Enfield, New Hampshire, pp 101–124

    Google Scholar 

  • Singh G, Singh N, Marwaha TS (2009) Crop genotype and a novel symbiotic fungus influences the root endophytic colonization potential of plant growth promoting rhizobacteria. Physiol Mol Biol Plants 15:87–92

    Article  CAS  Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stouggard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  PubMed  CAS  Google Scholar 

  • Tarafdar JC, Rao AV (1996) Contribution of Aspergillus strains to acquisition of phosphorus by wheat (Triticum aestivum L.) and chick pea (Cicer arietinum L.) grown in a loamy soil. Appl Soil Ecol 3:190–114

    Article  Google Scholar 

  • Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M, Downie JA, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, Stougaard J (2006) Deregulation of a Ca2+/calmodulin dependent kinase leads to spontaneous nodule formation. Nature 441:1153–1156

    Article  PubMed  CAS  Google Scholar 

  • Tisserant B, Gianinazzi PV, Gian IS, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    Article  CAS  Google Scholar 

  • Urban A, Weiss M, Bauer R (2003) Ectomycorrhizas involving sebacinoid mycobionts. Mycol Res 107:3–14

    Article  PubMed  Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novak O, Stmad M, Ludwig-Muller J, Oelmuller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Interact 21:1371–1383

    Article  PubMed  CAS  Google Scholar 

  • Vadassery J, Ranf S, Drzewiecki C, Mithofer A, Mazars C, Scheel D, Lee J, Oelmuller R (2009a) A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J 59:193–206

    Article  PubMed  CAS  Google Scholar 

  • Vadassery J, Tripathi S, Prasad R, Varma A, Oelmuller R (2009b) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Varma A, Franken P (1997) Patent number 97121440.8-2105. European Patent Office, Muenchen, Germany

    Google Scholar 

  • Varma A, Singh A, Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Franken P, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: a cultivable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) The Mycota IX. Springer, Heidelberg, Germany, pp 123–150

    Google Scholar 

  • Varma A (2008) Mycorrhiza-genetics and molecular biology, ecofunction, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin, Heidelberg, p 797

    Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Butehorn B, Fraken P (1998) Piriformospora indica, gen. et sp. nov., a new root colonizing fungus. Mycologia 9:896–903

    Article  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  PubMed  CAS  Google Scholar 

  • Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Schafer P, Kogel KH (2008) Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol 165:60–70

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  PubMed  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Weiss M, Selosse M-A, Rexer K-H, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in the phosphate transport to the host plant. J Biol Chem 285(34):26532–26544. doi:10.1074/jbc.M110.111021, PMID: 20479005; This is cited from URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924090/

    Article  PubMed  CAS  Google Scholar 

  • Yadav V, Verma PK, Varma A (2004) Phosphorus metabolism and regulation by symbiotic fungi. In: Podila GK, Varma A (eds) Basic research and applications of mycorrhizae. IK International Pvt Ltd, New Delhi, pp 111–139

    Google Scholar 

  • Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA 105:20540–20545

    Article  PubMed  CAS  Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satwant Kaur Gosal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gosal, S.K., Kalia, A., Varma, A. (2013). Piriformospora indica: Perspectives and Retrospectives. In: Varma, A., Kost, G., Oelmüller, R. (eds) Piriformospora indica. Soil Biology, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33802-1_4

Download citation

Publish with us

Policies and ethics