A Theoretical Analysis of Camera Response Functions in Image Deblurring

  • Xiaogang Chen
  • Feng Li
  • Jie Yang
  • Jingyi Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7578)


Motion deblurring is a long standing problem in computer vision and image processing. In most previous approaches, the blurred image is modeled as the convolution of a latent intensity image with a blur kernel. However, for images captured by a real camera, the blur convolution should be applied to scene irradiance instead of image intensity and the blurred results need to be mapped back to image intensity via the camera’s response function (CRF). In this paper, we present a comprehensive study to analyze the effects of CRFs on motion deblurring. We prove that the intensity-based model closely approximates the irradiance model at low frequency regions. However, at high frequency regions such as edges, the intensity-based approximation introduces large errors and directly applying deconvolution on the intensity image will produce strong ringing artifacts even if the blur kernel is invertible. Based on the approximation error analysis, we further develop a dual-image based solution that captures a pair of sharp/blurred images for both CRF estimation and motion deblurring. Experiments on synthetic and real images validate our theories and demonstrate the robustness and accuracy of our approach.


High Frequency Region Motion Blur Radiometric Calibration Ringing Artifact Blur Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH (1997)Google Scholar
  2. 2.
    Chang, Y.C., Reid, J.F.: RGB calibration for color image-analysis in machine vision. IEEE Trans. on IP 5, 1414–1422 (1996)Google Scholar
  3. 3.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: SIGGRAPH (2006)Google Scholar
  4. 4.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. In: SIGGRAPH (2007)Google Scholar
  5. 5.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. In: SIGGRAPH (2008)Google Scholar
  6. 6.
    Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia 2009 (2009)Google Scholar
  7. 7.
    Chen, X., He, X., Yang, J., Wu, Q.: An effective document image deblurring algorithm. In: CVPR (2011)Google Scholar
  8. 8.
    Chen, X., Yang, J., Wu, Q.: Image deblur in gradient domain. Optical Engineering 49, 117003+ (2010)CrossRefGoogle Scholar
  9. 9.
    Wilburn, B., Xu, H., Matsushita, Y.: Radiometric calibration using temporal irradiance mixtures. In: CVPR (2008)Google Scholar
  10. 10.
    Kim, S., Tai, Y.W., Kim, S., Brown, M.S., Matsushita, Y.: Nonlinear camera response functions and image deblurring. In: CVPR (2012)Google Scholar
  11. 11.
    Kim, S.J., Pollefeys, M.: Robust radiometric calibration and vignetting correction. IEEE Trans. PAMI 30, 562–576 (2008)CrossRefGoogle Scholar
  12. 12.
    Grossberg, M.D., Nayar, S.K.: Modeling the space of camera response functions. IEEE Trans. PAMI 26, 1272–1282 (2004)CrossRefGoogle Scholar
  13. 13.
    Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. In: CVPR (1999)Google Scholar
  14. 14.
    Lee, J.Y., Shi, B., Matsushita, Y., Kweon, I.S., Ikeuchi, K.: Radiometric calibration by transform invariant low-rank structure. In: CVPR (2011)Google Scholar
  15. 15.
    Kim, S., Frahm, J., Pollefeys, M.: Radiometric calibration with illumination change for outdoor scene analysis. In: CVPR (2008)Google Scholar
  16. 16.
    Lin, S., Gu, J., Yamazaki, S., Shum, H.Y.: Radiometric calibration from a single image. In: CVPR (2004)Google Scholar
  17. 17.
    Lin, S., Zhang, L.: Determining the radiometric response function from a single grayscale image. In: CVPR (2005)Google Scholar
  18. 18.
    Matsushita, Y., Lin, S.: Radiometric calibration from noise distributions. In: CVPR (2007)Google Scholar
  19. 19.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)Google Scholar
  20. 20.
    Tai, Y.W., Du, H., Brown, M.S., Lin, S.: Correction of spatially varying image and video motion blur using a hybrid camera. IEEE Trans. PAMI 32, 1012–1028 (2010)CrossRefGoogle Scholar
  21. 21.
    Joshi, N., Szeliski, R., Kriegman, D.J.: Psf estimation using sharp edge prediction. In: CVPR (2008)Google Scholar
  22. 22.
    Jia, J.: Single image motion deblurring using transparency. In: CVPR (2007)Google Scholar
  23. 23.
    Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)Google Scholar
  24. 24.
    Weiss, Y., Freeman, W.T.: What makes a good model of natural images? In: CVPR (2007)Google Scholar
  25. 25.
    Farid, H.: Blind inverse gamma correction. IEEE Transactions on Image Processing 10, 1428–1433 (2001)zbMATHCrossRefGoogle Scholar
  26. 26.
    Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Img. Sci. 1, 248–272 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Blurred/non-blurred image alignment using sparseness prior. In: ICCV (2007)Google Scholar
  28. 28.
    Ng, T.T., Chang, S.F., Tsui, M.P.: Using geometry invariants for camera response function estimation. In: CVPR (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiaogang Chen
    • 1
    • 2
    • 3
  • Feng Li
    • 3
  • Jie Yang
    • 1
    • 2
  • Jingyi Yu
    • 3
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Key Laboratory of System Control and Information ProcessingMinistry of EducationShanghaiChina
  3. 3.University of DelawareNewarkUSA

Personalised recommendations