Advertisement

Saliency Modeling from Image Histograms

  • Shijian Lu
  • Joo-Hwee Lim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7578)

Abstract

We proposed a computational visual saliency modeling technique. The proposed technique makes use of a color co-occurrence histogram (CCH) that captures not only “how many” but also “where and how” image pixels are composed into a visually perceivable image. Hence the CCH encodes image saliency information that is usually perceived as the discontinuity between an image region or object and its surrounding. The proposed technique has a number of distinctive characteristics: It is fast, discriminative, tolerant to image scale variation, and involves minimal parameter tuning. Experiments over benchmarking datasets show that it predicts fixational eye tracking points accurately and a superior AUC of 71.25 is obtained.

Keywords

Attention saliency modeling co-occurrence histogram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsotsos, J.: Analyzing Vision at the Complexity Level. Behav. Brain. Sci. 13(3), 423–445 (1990)CrossRefGoogle Scholar
  2. 2.
    Itti, L., Koch, C.: Computational Modeling of Visual Attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)CrossRefGoogle Scholar
  3. 3.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-based Visual Attention for Rapid Scene Analysis. IEEE T. Pattern Anal. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  4. 4.
    Kadir, T., Brady, M.: Saliency, Scale and Image Description. Int. J. Compt. Vision 45(2), 83–105 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gao, D., Vasconcelos, N.: Bottom-up Saliency is a Discriminant Process. In: IEEE 11th International Conference on Computer Vision, pp. 1–6 (2007)Google Scholar
  6. 6.
    Hou, X., Zhang, L.: Saliency Detection: A Spectral Residual Approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  7. 7.
    Bruce, N., Tsotsos, J.: Saliency based on Information Maximization. In: Neural Information Processing Systems Conference, pp. 155–162 (2006)Google Scholar
  8. 8.
    Bruce, N., Tsotsos, J.: Saliency, Attention, and Visual Search: An Information Theoretic Approach. J. Vis. 9(3), 1–24 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhang, L., Tong, M.H., Marks, T.K., Cottrell, G.W.: SUN: A Bayesian Framework for Saliency using Natural Statistics. J. Vis. 8(7), 1–20 (2008)CrossRefGoogle Scholar
  10. 10.
    Harel, J., Koch, C., Perona, P.: Graph-Based Visual Saliency. In: Neural Information Processing Systems Conference, pp. 545–552 (2007)Google Scholar
  11. 11.
    Kienzle, W., Wichmann, F.A., Scholkopf, B., Franz, M.O.: A Non-Parametric Approach to Bottom-up Visual Saliency. In: Neural Information Processing Systems Conference, pp. 689–696 (2007)Google Scholar
  12. 12.
    Zhao, Q., Koch, C.: Learning a Saliency Map using Fixated Locations in Natural Scenes. J. of Vis. 3(9), 1–15 (2011)CrossRefGoogle Scholar
  13. 13.
    Seo, H.J., Milanfar, P.: Static and Space-Time Visual Saliency Detection by Self-Resemblance. J. of Vis. 12(15), 1–15 (2009)Google Scholar
  14. 14.
  15. 15.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image Indexing Using Color Correlograms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)Google Scholar
  16. 16.
    Rao, A., Srihari, R.K., Zhang, Z.: Spatial Color Histograms for Content-based Image Retrieval. In: IEEE International Conference on Tools with Artificial Intelligence, pp. 183–186 (1999)Google Scholar
  17. 17.
    Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to Predict Where Humans Look. In: International Conference on Computer Vision, pp. 2106–2113 (2009)Google Scholar
  18. 18.
    Goferman, S., Zelnik-Manor, L., Tal, A.: Context-Aware Saliency Detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2376–2383 (2010)Google Scholar
  19. 19.
    Liu, T., Sun, J., Zheng, N., Tang, X., Shum, H.: Learning to Detect A Salient Object. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  20. 20.
    Tatler, B., Baddeley, R., Gilchrist, I.: Visual Correlates of Fixation Selection: Effects of Scale and Time. Vision Research 45(5), 643–659 (2005)CrossRefGoogle Scholar
  21. 21.
    Hou, X., Harel, J., Koch, C.: Image Signature: Highlighting sparse salient regions. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 194–201 (2012)CrossRefGoogle Scholar
  22. 22.
    Haralick, R.M., Shanmugan, K., Dinstein, I.: Textural Features for Image Classification. IEEE T. Syst. Man Cy. C. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  23. 23.
    Cheng, M.M., Zhang, G.X., Mitra, N., Huang, X., Hu, S.M.: Global Contrast based Salient Region Detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 409–416 (2011)Google Scholar
  24. 24.
    Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-Tuned Salient Region Detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)Google Scholar
  25. 25.
    Chang, P., Krumm, J.: Object Recognition with Color Cooccurrence Histograms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 498–504 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shijian Lu
    • 1
  • Joo-Hwee Lim
    • 1
  1. 1.IPAL (UMI CNRS 2955)Institute for Infocomm Research, A*STARSingapore

Personalised recommendations