Robust and Accurate Shape Model Fitting Using Random Forest Regression Voting

  • Tim F. Cootes
  • Mircea C. Ionita
  • Claudia Lindner
  • Patrick Sauer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7578)


A widely used approach for locating points on deformable objects is to generate feature response images for each point, then to fit a shape model to the response images. We demonstrate that Random Forest regression can be used to generate high quality response images quickly. Rather than using a generative or a discriminative model to evaluate each pixel, a regressor is used to cast votes for the optimal position. We show this leads to fast and accurate matching when combined with a statistical shape model. We evaluate the technique in detail, and compare with a range of commonly used alternatives on several different datasets. We show that the random forest regression method is significantly faster and more accurate than equivalent discriminative, or boosted regression based methods trained on the same data.


Facial Feature Shape Model Sparse Grid Active Appearance Model Statistical Shape Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cootes, T.F., Taylor, C.J., Cooper, D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61, 38–59 (1995)CrossRefGoogle Scholar
  2. 2.
    Milborrow, S., Nicolls, F.: Locating Facial Features with an Extended Active Shape Model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 504–513. Springer, Heidelberg (2008), CrossRefGoogle Scholar
  3. 3.
    Felzenszwalb, P., Huttenlocher, D.P.: Pictorial structures for object recognition. International Journal of Computer Vision 61, 55–79 (2005)CrossRefGoogle Scholar
  4. 4.
    Cristinacce, D., Cootes, T.F.: Automatic feature localisation with constrained local models. Pattern Recognition 41, 3054–3067 (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Saragih, J.M., Lucey, S., Cohn, J.F.: Deformable model fitting by regularized mean-shifts. International Journal of Computer Vision 200-215 (2011)Google Scholar
  6. 6.
    Gall, J., Lempitsky, V.: Class-specic hough forests for object detection. In: CVPR (2009)Google Scholar
  7. 7.
    Valstar, M., Martinez, B., Binefa, X., Pantic, M.: Facial point detection using boosted regression and graph models. In: CVPR (2010)Google Scholar
  8. 8.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 681–685 (2001)CrossRefGoogle Scholar
  9. 9.
    Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: CVPR (2011)Google Scholar
  10. 10.
    Covell, M.: Eigen-points: Control-point location using principal component analysis. In: International Conference on Automatic Face and Gesture Recognition, Killington, USA, pp. 122–127 (1996)Google Scholar
  11. 11.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Saragih, J., Goecke, R.: A non-linear discriminative approach to AAM fitting. In: Proc. ICCV (2007)Google Scholar
  13. 13.
    Tresadern, P., Sauer, P., Cootes, T.: Additive update predictors in active appearance models. In: British Machine Vision Conference. BMVA Press (2010)Google Scholar
  14. 14.
    Sauer, P., Cootes, T., Taylor, C.: Accurate regression procedures for active appearance models. In: BMVC (2011)Google Scholar
  15. 15.
    Zhou, S., Comaniciu, D.: Shape regression machine. In: Information Processing in Medical Imaging, pp. 13–25. IEEE Computer Society Press (2007)Google Scholar
  16. 16.
    Zimmermann, K., Matas, J., Svoboda, T.: Tracking by an optimal sequence of linear predictors. IEEE Trans. PAMI 30, 677–692 (2009)CrossRefGoogle Scholar
  17. 17.
    Ong, E., Bowden, R.: Robust facial feature tracking using shape-constrained multiresolution-selected linear predictors. IEEE PAMI 33, 1844–1859 (2004)Google Scholar
  18. 18.
    Dollár, P., Welinder, P., Perona, P.: Cascaded pose regression. In: CVPR, pp. 1078–1085 (2010)Google Scholar
  19. 19.
    Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13, 111–122 (1981)zbMATHCrossRefGoogle Scholar
  20. 20.
    Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV Workshop on Statistical Learning in Computer Vision (2004)Google Scholar
  21. 21.
    Bourdev, L., Malik, J.: Poselets: Body part detectors trained using 3d human pose annotations. In: ICCV (2009)Google Scholar
  22. 22.
    Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient regression of general-activity human poses from depth images. In: ICCV (2011)Google Scholar
  23. 23.
    Dantone, M., Gall, J., Fanelli, G., Van Gool, L.: Real-time Facial Feature Detection using Conditional Regression Forests. In: CVPR (2012)Google Scholar
  24. 24.
    Luo, P., Wang, X., Tang, X.: Hierarchical Face Parsing vis Deep Learning. In: CVPR (2012)Google Scholar
  25. 25.
    Cao, X., Wei, Y., Wen, F., Sun, J.: Face Alignment by Explicit Shape Regression. In: CVPR (2012)Google Scholar
  26. 26.
    Criminisi, A., Shotton, J., Robertson, D.: Konukoglu, E.: Regression forests for efficient anatomy detection and localisation in CT studies. In: Medical Computer Vision Workshop, pp. 106–117 (2010)Google Scholar
  27. 27.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)zbMATHCrossRefGoogle Scholar
  28. 28.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. 1, pp. 511–518 (2001)Google Scholar
  29. 29.
    Schulter, S., Leistner, C., Roth, P.M., Gool, L.V., Bischof, H.: On-line hough forests. In: BMVC (2011)Google Scholar
  30. 30.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSdb: The extended m2vts database. In: Proc. 2nd Conf. on Audio and Video-Based Biometric Personal Verification, pp. 72–77. Springer (1999)Google Scholar
  31. 31.
    Kostinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization. In: ICCV Workshops, pp. 2144–2151. IEEE (2011)Google Scholar
  32. 32.
    Lindner, C., Thiagarajah, S., Wilkinson, J., arcOGEN Consortium, Wallis, G., Cootes, T.F.: Accurate fully automatic femur segmentation in pelvic radiographs using regression voting. In: MICCAI (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tim F. Cootes
    • 1
  • Mircea C. Ionita
    • 1
  • Claudia Lindner
    • 1
  • Patrick Sauer
    • 1
  1. 1.The University of ManchesterUK

Personalised recommendations