Advertisement

Auto-Grouped Sparse Representation for Visual Analysis

  • Jiashi Feng
  • Xiaotong Yuan
  • Zilei Wang
  • Huan Xu
  • Shuicheng Yan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7572)

Abstract

In this work, we investigate how to automatically uncover the underlying group structure of a feature vector such that each group characterizes certain object-specific patterns, e.g., visual pattern or motion trajectories from one object. By mining the group structure, we can effectively alleviate the mutual inference of multiple objects and improve the performance in various visual analysis tasks. To this end, we propose a novel auto-grouped sparse representation (ASR) method. ASR groups semantically correlated feature elements together through optimally fusing their multiple sparse representations. Due to the intractability of primal objective function, we also propose well-behaved convex relaxation and smooth approximation to guarantee obtaining a global optimal solution effectively. Finally, we apply ASR in two important visual analysis tasks: multi-label image classification and motion segmentation. Comprehensive experimental evaluations show that ASR is able to achieve superior performance compared with the state-of-the-arts on these two tasks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: CVPR (2005)Google Scholar
  2. 2.
    Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for Large-Scale Image Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Yang, J., Yu, K., Huang, T.: Efficient Highly Over-Complete Sparse Coding Using a Mixture Model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 113–126. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Li, F., Carreira, J., Sminchisescu, C.: Object recognition as ranking holistic figure-ground hypotheses. In: CVPR (2010)Google Scholar
  5. 5.
    Song, Z., Chen, Q., Huang, Z., Hua, Y., Yan, S.: Contextualizing object detection and classification. In: CVPR (2011)Google Scholar
  6. 6.
    Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. TPAMI (2008)Google Scholar
  7. 7.
    Yuan, X., Yan, S.: Visual classification with multi-task joint sparse representation. In: CVPR (2010)Google Scholar
  8. 8.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse representation for computer vision and pattern recognition. IEEE (2010)Google Scholar
  9. 9.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR (2009)Google Scholar
  10. 10.
    Liu, D., Yan, S., Rui, Y., Zhang, H.: Unified tag analysis with multi-edge graph. In: MM (2010)Google Scholar
  11. 11.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. J Roy. Stat. Soc. B Met. (1977)Google Scholar
  12. 12.
    Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (gpca). TPAMI (2005)Google Scholar
  13. 13.
    Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD (1999)Google Scholar
  14. 14.
    Quadrianto, N., Caetano, T., Lim, J., Schuurmans, D.: Convex relaxation of mixture regression with efficient algorithms. In: NIPS (2009)Google Scholar
  15. 15.
    Hocking, T., Vert, J., Bach, F., Joulin, A.: Clusterpath: an algorithm for clustering using convex fusion penalties. In: ICML (2011)Google Scholar
  16. 16.
    Shen, X., Huang, H.: Grouping pursuit through a regularization solution surface. J Am. Stat. Assoc. (2010)Google Scholar
  17. 17.
    Vert, J., Bleakley, K.: Fast detection of multiple change-points shared by many signals using group lars. In: NIPS (2010)Google Scholar
  18. 18.
    Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. (2005)Google Scholar
  19. 19.
    Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS (2001)Google Scholar
  20. 20.
    Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge Univ. Pr. (2004)Google Scholar
  21. 21.
    Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the ℓ1-ball for learning in high dimensions. In: ICML (2008)Google Scholar
  22. 22.
    Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. Submitted to SIAM J. Optimiz. (2008)Google Scholar
  23. 23.
    Subramanya, A., Bilmes, J.: Entropic graph regularization in non-parametric semi-supervised classification. In: NIPS (2009)Google Scholar
  24. 24.
    Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Tech. Rep. (2002)Google Scholar
  25. 25.
    Yan, S., Wang, H.: Semi-supervised learning by sparse representation. In: SDM (2009)Google Scholar
  26. 26.
    Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. TPAMI (2007)Google Scholar
  27. 27.
    Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image database from national university of singapore. In: CIVR (2009)Google Scholar
  28. 28.
    Chen, X., Yuan, X., Chen, Q., Yan, S., Chua, T.: Multi-label visual classification with label exclusive context. In: ICCV (2011)Google Scholar
  29. 29.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge Univ. Press (2000)Google Scholar
  30. 30.
    Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: CVPR (2007)Google Scholar
  31. 31.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM (1981)Google Scholar
  32. 32.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiashi Feng
    • 1
  • Xiaotong Yuan
    • 2
  • Zilei Wang
    • 3
  • Huan Xu
    • 4
  • Shuicheng Yan
    • 1
  1. 1.Department of ECENational University of SingaporeSingapore
  2. 2.Department of StatisticsRutgers UniversityUSA
  3. 3.Department of AutomationUniversity of Science and Technology of ChinaChina
  4. 4.Department of MENational University of SingaporeSingapore

Personalised recommendations