Advertisement

Hausdorff Distance Constraint for Multi-surface Segmentation

  • Frank R. Schmidt
  • Yuri Boykov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7572)

Abstract

It is well known that multi-surface segmentation can be cast as a multi-labeling problem. Different segments may belong to the same semantic object which may impose various inter-segment constraints [1]. In medical applications, there are a lot of scenarios where upper bounds on the Hausdorff distances between subsequent surfaces are known. We show that incorporating these priors into multi-surface segmentation is potentially NP-hard. To cope with this problem we develop a submodular-supermodular procedure that converges to a locally optimal solution well-approximating the problem. While we cannot guarantee global optimality, only feasible solutions are considered during the optimization process. Empirically, we get useful solutions for many challenging medical applications including MRI and ultrasound images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delong, A., Boykov, Y.: Globally optimal segmentation of multi-region objects. In: IEEE ICCV, Kyoto, Japan, pp. 285–292 (2009)Google Scholar
  2. 2.
    Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE PAMI 28, 119–134 (2006)CrossRefGoogle Scholar
  3. 3.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI 23, 1222–1239 (2001)CrossRefGoogle Scholar
  4. 4.
    Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape priors. In: IEEE Int. Conf. on CVPR, pp. 755–762 (2005)Google Scholar
  5. 5.
    Cremers, D.: Dynamical statistical shape priors for level set based tracking. IEEE PAMI 28, 1262–1273 (2006)CrossRefGoogle Scholar
  6. 6.
    Veksler, O.: Star Shape Prior for Graph-Cut Image Segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Lempitsky, V., Blake, A., Rother, C.: Image Segmentation by Branch-and-Mincut. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 15–29. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Narasimhan, M., Bilmes, J.A.: A submodular-supermodular procedure with applications to discriminative structure learning. In: UAI, pp. 404–412 (2005)Google Scholar
  9. 9.
    Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Computation 15, 915–936 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In: IEEE Int. Conf. on CVPR, pp. 993–1000 (2006)Google Scholar
  11. 11.
    Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Graph Cut Based Inference with Co-occurrence Statistics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 239–253. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Karzanov, A.V.: Quick algorithm for determining the distance from the points of the given subset of an integer lattice to the points of its complement. Cybernetics and System Analysis, 177–181 (1992); translation by Julia KomissarchikGoogle Scholar
  13. 13.
    Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Computing and Information Science TR2004-1963, Cornell (2004)Google Scholar
  14. 14.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. of Computer Vision 22, 61–79 (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE PAMI 25, 1333–1336 (2003)CrossRefGoogle Scholar
  16. 16.
    Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathematics 123, 155–225 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE PAMI 24, 657–673 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Frank R. Schmidt
    • 1
  • Yuri Boykov
    • 2
  1. 1.Université Paris EstFrance
  2. 2.University of Western OntarioCanada

Personalised recommendations