Frequency Analysis of Transient Light Transport with Applications in Bare Sensor Imaging

  • Di Wu
  • Gordon Wetzstein
  • Christopher Barsi
  • Thomas Willwacher
  • Matthew O’Toole
  • Nikhil Naik
  • Qionghai Dai
  • Kyros Kutulakos
  • Ramesh Raskar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7572)


Light transport has been analyzed extensively, in both the primal domain and the frequency domain; the latter provides intuition of effects introduced by free space propagation and by optical elements, and allows for optimal designs of computational cameras for tailored, efficient information capture. Here, we relax the common assumption that the speed of light is infinite and analyze free space propagation in the frequency domain considering spatial, temporal, and angular light variation. Using this analysis, we derive analytic expressions for cross-dimensional information transfer and show how this can be exploited for designing a new, time-resolved bare sensor imaging system.


Light transport Fourier analysis Time of flight Lensless imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edgerton, H.E.: Electronic Flash, Strobe. MIT (1987)Google Scholar
  2. 2.
    Hamamatsu: Hamamatsu Streak Camera (2012),
  3. 3.
    Durand, F., Holzschuch, N., Soler, C., Chan, E., Sillion, F.X.: A Frequency Analysis of Light Transport. ACM Trans. Graph (SIGGRAPH) 24, 1115–1126 (2005)CrossRefGoogle Scholar
  4. 4.
    Edward, R., Dowski, J., Cathey, W.T.: Extended depth of field through wave-front coding. Applied Optics 34, 1859–1866 (1995)CrossRefGoogle Scholar
  5. 5.
    Levin, A., Hasinoff, S.W., Green, P., Durand, F., Freeman, W.T.: 4d frequency analysis of computational cameras for depth of field extension. ACM Trans. Graph. (Siggraph) 28, 97:1–97:14 (2009)CrossRefGoogle Scholar
  6. 6.
    Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph (SIGGRAPH) 26, 69 (2007)Google Scholar
  7. 7.
    Ng, R.: Fourier slice photography. ACM Trans. Graph (SIGGRAPH) 24, 735–744 (2005)CrossRefGoogle Scholar
  8. 8.
    Levin, A., Durand, F.: Linear view synthesis using a dimensionality gap light field prior. In: Proc. CVPR, pp. 1–8 (2010)Google Scholar
  9. 9.
    Raskar, R., Davis, J.: 5D Time-Light Transport Matrix: What Can We Reason about Scene Properties? MIT Technical Report (2008)Google Scholar
  10. 10.
    Zomet, A., Nayar, S.K.: Lensless imaging with a controllable aperture. In: Proc. CVPR, pp. 339–346 (2006)Google Scholar
  11. 11.
    Koppal, S.J., Gkioulekas, I., Zickler, T., Barrows, G.L.: Wide-angle micro sensors for vision on a tight budget. In: Proc. CVPR, pp. 361–368 (2011)Google Scholar
  12. 12.
    Andersen, G.: Large optical photon sieve. Opt. Lett. 30, 2976–2978 (2005)CrossRefGoogle Scholar
  13. 13.
    Gill, P.R., Lee, C., Lee, D.G., Wang, A., Molnar, A.: A microscale camera using direct fourier-domain scene capture. Opt. Lett. 36, 2949–2951 (2011)CrossRefGoogle Scholar
  14. 14.
    Saleh, B.: Introduction to Subsurface Imaging. Cambridge University Press (2011)Google Scholar
  15. 15.
    Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M., Raskar, R.: Recovering three-dimensional shape around a corner using ultra-fast time-of-flight imaging. Nature Communications 3, 745–758 (2012)CrossRefGoogle Scholar
  16. 16.
    Naik, N., Zhao, S., Velten, A., Raskar, R., Bala, K.: Single view reflectance capture using multiplexed scattering and time-of-flight imaging. ACM Trans. Graph (SIGGRAPH Asia) 30, 171 (2011)Google Scholar
  17. 17.
    Pandharkar, R., Velten, A., Bardagjy, A., Lawson, E., Bawendi, M., Raskar, R.: Estimating motion and size of moving non-line-of-sight objects in cluttered environments. In: Proc. CVPR, pp. 265–272 (2011)Google Scholar
  18. 18.
    Wu, D., O’Toole, M., Velten, A., Agrawal, A., Raskar, R.: Decomposing global light transport using time of flight imaging. In: Proc. CVPR, pp. 1–8 (2012)Google Scholar
  19. 19.
    Isaksen, A., McMillan, L., Gortler, S.J.: Dynamically reparameterized light fields. ACM Trans. Graph (SIGGRAPH), 297–306 (2000)Google Scholar
  20. 20.
    Chai, J.X., Tong, X., Chan, S.C., Shum, H.Y.: Plenoptic sampling. ACM Trans. Graph (SIGGRAPH), 307–318 (2000)Google Scholar
  21. 21.
    Kajiya, J.T.: The Rendering Equation. ACM Trans. Graph (SIGGRAPH) 20, 143–150 (1986)Google Scholar
  22. 22.
    Smith, A., Skorupski, J., Davis, J.: Transient Rendering. Technical Report UCSC-SOE-08-26, School of Engineering, University of California, Santa Cruz (2008)Google Scholar
  23. 23.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. Society for Industrial Mathematics (2001)Google Scholar
  24. 24.
    Herman, G.T.: Image reconstruction from projections. Real-Time Imaging 1, 3–18 (1995)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chandrasekaran, V., Wakin, M., Baron, D., Baraniuk, R.: Surflets: A sparse representation for multidimensional functions containing smooth discontinuities. In: Proceedings of International Symposium on Information Theory, ISIT 2004, p. 563. IEEE (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Di Wu
    • 1
    • 2
    • 5
  • Gordon Wetzstein
    • 1
  • Christopher Barsi
    • 1
  • Thomas Willwacher
    • 3
  • Matthew O’Toole
    • 4
  • Nikhil Naik
    • 1
  • Qionghai Dai
    • 2
  • Kyros Kutulakos
    • 4
  • Ramesh Raskar
    • 1
  1. 1.MIT Media LabChina
  2. 2.Department of AutomationTsinghua UniversityChina
  3. 3.Department of MathematicsHarvard UniversityUSA
  4. 4.Department of Computer ScienceUniversity of TorontoCanada
  5. 5.Graduate School at ShenzhenTsinghua UniversityChina

Personalised recommendations