Advertisement

Match Graph Construction for Large Image Databases

  • Kwang In Kim
  • James Tompkin
  • Martin Theobald
  • Jan Kautz
  • Christian Theobalt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7572)

Abstract

How best to efficiently establish correspondence among a large set of images or video frames is an interesting unanswered question. For large databases, the high computational cost of performing pair-wise image matching is a major problem. However, for many applications, images are inherently sparsely connected, and so current techniques try to correctly estimate small potentially matching subsets of databases upon which to perform expensive pair-wise matching. Our contribution is to pose the identification of potential matches as a link prediction problem in an image correspondence graph, and to propose an effective algorithm to solve this problem. Our algorithm facilitates incremental image matching: initially, the match graph is very sparse, but it becomes dense as we alternate between link prediction and verification. We demonstrate the effectiveness of our algorithm by comparing it with several existing alternatives on large-scale databases. Our resulting match graph is useful for many different applications. As an example, we show the benefits of our graph construction method to a label propagation application which propagates user-provided sparse object labels to other instances of that object in large image collections.

Keywords

Image matching graph construction link prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM TOG (Proc. SIGGRAPH) 25, 835–846 (2006)CrossRefGoogle Scholar
  2. 2.
    Raguram, R., Wu, C., Frahm, J.M., Lazebnik, S.: Modeling and recognition of landmark image collections using iconic scene graphs. IJCV 95(3), 213–239 (2011)CrossRefGoogle Scholar
  3. 3.
    Heath, K., Gelfand, N., Ovsjanikov, M., Aanjaneya, M., Guibas, L.J.: Image webs: computing and exploiting connectivity in image collections. In: Proc. IEEE CVPR, pp. 3432–3439 (2010)Google Scholar
  4. 4.
    Gammeter, S., Bossard, L., Quack, T., Gool, L.V.: I know what you did last summer: object-level auto-annotation of holiday snaps. In: Proc. ICCV, pp. 614–621 (2009)Google Scholar
  5. 5.
    Zheng, Y.T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.S., Neven, H.: Tour the world: building a web-scale landmark recognition engine. In: Proc. IEEE CVPR, pp. 1085–1092 (2009)Google Scholar
  6. 6.
    Kennedy, L., Naaman, M.: Generating diverse and representative image search results for landmarks. In: Proc. WWW, pp. 297–306 (2008)Google Scholar
  7. 7.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: Proc. ICCV (2009)Google Scholar
  8. 8.
    Tompkin, J., Kim, K.I., Kautz, J., Theobalt, C.: Videoscapes: exploring sparse, unstructured video collections. ACM TOG (Proc. SIGGRAPH) 68, 1–12 (2012)CrossRefGoogle Scholar
  9. 9.
    Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proc. ICCV, pp. 1470–1477 (2003)Google Scholar
  10. 10.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)Google Scholar
  11. 11.
    Philbin, J., Sivic, J., Zisserman, A.: Geometric latent Dirichlet allocation on a matching graph for large-scale image datasets. IJCV 95(2), 138–153 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Weyand, T., Leibe, B.: Discovering favorite views of popular places with iconoid shift. In: Proc. ICCV, pp. 1132–1139 (2011)Google Scholar
  13. 13.
    Hays, J., Efros, A.A.: IM2GPS: estimating geographic information from a single image. In: Proc. IEEE CVPR, pp. 1–8 (2008)Google Scholar
  14. 14.
    Kleban, J., Moxley, E., Xu, J., Manjunath, B.S.: Global annotation on georeferenced photographs. In: Proc. CIVR, pp. 1–8 (2009)Google Scholar
  15. 15.
    Serdyukov, P., Murdock, V., van Zwol, R.: Placing flickr photos on a map. In: Proc. SIGIR, pp. 484–491 (2009)Google Scholar
  16. 16.
    Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s photos. In: Proc. WWW, pp. 761–770 (2009)Google Scholar
  17. 17.
    Kunegis, J., Lommatzsch, A.: Learning spectral graph transformations for link prediction. In: Proc. ICML, pp. 561–568 (2009)Google Scholar
  18. 18.
    Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proc. WSDM, pp. 635–644 (2011)Google Scholar
  19. 19.
    Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J., Luca, E.W., Albayrak, S.: Spectral analysis of signed graphs for clustering, prediction and visualization. In: Proc. ICDM, pp. 559–570 (2010)Google Scholar
  20. 20.
    Lü, L., Zhou, T.: Link prediction in complex networks: a survey. arXiv:1010.0725v1 (2011)Google Scholar
  21. 21.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  22. 22.
    Lazebnik, S., Schmid, C., Ponce., J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proc. IEEE CVPR, pp. 2169–2178 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kwang In Kim
    • 1
  • James Tompkin
    • 1
    • 2
    • 3
  • Martin Theobald
    • 1
  • Jan Kautz
    • 2
  • Christian Theobalt
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.University College LondonLondonUK
  3. 3.Intel Visual Computing InstituteSaarbrückenGermany

Personalised recommendations