Advertisement

A Dictionary Learning Approach for Classification: Separating the Particularity and the Commonality

  • Shu Kong
  • Donghui Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7572)

Abstract

Empirically, we find that, despite the class-specific features owned by the objects appearing in the images, the objects from different categories usually share some common patterns, which do not contribute to the discrimination of them. Concentrating on this observation and under the general dictionary learning (DL) framework, we propose a novel method to explicitly learn a common pattern pool (the commonality) and class-specific dictionaries (the particularity) for classification. We call our method DL-COPAR, which can learn the most compact and most discriminative class-specific dictionaries used for classification. The proposed DL-COPAR is extensively evaluated both on synthetic data and on benchmark image databases in comparison with existing DL-based classification methods. The experimental results demonstrate that DL-COPAR achieves very promising performances in various applications, such as face recognition, handwritten digit recognition, scene classification and object recognition.

Keywords

Dictionary Learning Classification Commonality Particularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elad, M., Aharon, M.: Image denoising via learned dictionaries and sparse representation. In: CVPR (2006)Google Scholar
  2. 2.
    Bradley, D.M., Bagnell, J.A.: Differentiable sparse coding. In: NIPS (2008)Google Scholar
  3. 3.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. In: NIPS (2008)Google Scholar
  4. 4.
    Ramirez, I., Sprechmann, P., Sapiro, G.: Classification and clustering via dictionary learning with structured incoherence and shared features. In: CVPR (2010)Google Scholar
  5. 5.
    Zhang, Q., Li, B.: Discriminative k-svd for dictionary learning in face recognition. In: CVPR (2010)Google Scholar
  6. 6.
    Yang, M., Zhang, L., Feng, X., Zhang, D.: Fisher discrimination dictionary learning for sparse representation. In: ICCV (2011)Google Scholar
  7. 7.
    Wang, F., Lee, N., Sun, J., Hu, J., Ebadollahi, S.: Automatic group sparse coding. In: AAAI (2011)Google Scholar
  8. 8.
    Yang, M., Zhang, L., Yang, J., Zhang, D.: Metaface learning for sparse representation based face recognition. In: ICIP (2010)Google Scholar
  9. 9.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: NIPS (2007)Google Scholar
  10. 10.
    Aharon, M., Elad, M., Bruckstein, A.M.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Processing 54, 4311–4322 (2006)CrossRefGoogle Scholar
  11. 11.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR (2009)Google Scholar
  12. 12.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV (2004)Google Scholar
  13. 13.
    Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. PAMI (2001)Google Scholar
  14. 14.
    Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. PAMI (2009)Google Scholar
  15. 15.
    Jiang, Z., Lin, Z., Davis, L.S.: Learning a discriminative dictionary for sparse coding via label consistent k-svd. In: CVPR (2011)Google Scholar
  16. 16.
    Huang, K., Aviyente, S.: Sparse representation for signal classification. In: NIPS (2006)Google Scholar
  17. 17.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognition natural scene categories. In: CVPR (2006)Google Scholar
  18. 18.
    Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Learning locality-constrained linear coding for image classification. In: CVPR (2010)Google Scholar
  19. 19.
    Feng, J., Ni, B., Tian, Q., Yan, S.: Geometric ℓp norm feature pooling for image classification. In: CVPR (2011)Google Scholar
  20. 20.
    Boureau, Y.L., Roux, N.L., Bach, F., Ponce, J., LeCun, Y.: Ask the locals: multi-way local pooling for image recognition. In: ICCV (2011)Google Scholar
  21. 21.
    Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: CVPR (2010)Google Scholar
  22. 22.
    Oliva, A., Torraba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelop. IJCV (2001)Google Scholar
  23. 23.
    Li, F.F., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: CVPR (2005)Google Scholar
  24. 24.
    Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: Sun database: Large scale scene recognition from abbey to zoo. In: CVPR (2010)Google Scholar
  25. 25.
    Gao, S., Tsang, I.W.H., Chia, L.T., Zhao, P.: local features are not lonely - laplacian sparse coding for image classification. In: CVPR (2010)Google Scholar
  26. 26.
    Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: IEEE CVPR Workshop on Generative-Model Based Vision (2004)Google Scholar
  27. 27.
    Yang, J., Li, Y., Tian, Y., Duan, L., Gao, W.: Group-sensitive multiple kernel learning for object categorization. In: ICCV (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shu Kong
    • 1
  • Donghui Wang
    • 1
  1. 1.Dept. of Computer Science and TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations