Advertisement

Blind 384-bit Digital Signature Scheme

  • Alexandr Moldovyan
  • Nikolay Moldovyan
  • Evgenia Novikova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7531)

Abstract

The blind digital signature protocols play important role in e-commerce applications. In this paper the new blind digital signature scheme with 384-bit signature length is proposed. The latter is achieved by using finite subgroup of the multiplicative group of the finite ring of residues modulo n, where n is a product of two large primes. It is shown that proposed signature satisfies unlinkability and unforgeability properties.

Keywords

blind digital signature scheme two-dimension-cyclicity group difficult problem factorization problem discrete logarithm problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaum, D.: Blind signature for untraceable payments. In: Advances in Cryptology (CRYPTO 1982), pp. 199–203. Plenum Press, New York (1983)Google Scholar
  2. 2.
    Tahat, N.M.F., Shatnawi, S.M.A., Ismail, E.S.: A New Partially Blind Signature Based on Factoring and Discrete Logarithms. J. of Mathematics and Statistics 4(2), 124–129 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography, p. 780. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  4. 4.
    Boldyreva, A.: Efficient Threshold Signature, Multisignature and Blind Signature Schemes Based on the Gap-Diffi-Hellman-Group Signature Scheme. LNCS, vol. 2139, pp. 31–46, Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Camenisch, J.L., Piveteau, J.-M., Stadler, M.A.: Blind Signatures Based on the Discrete Logarithm Problem. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 428–432. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Moldovyan, N.A., Moldovyan, A.A.: Blind Collective Signature Protocol Based on Discrete Logarithm Problem. J. of Network Security 11(2), 106–113 (2010)Google Scholar
  7. 7.
    Moldovyan, N.A.: Blind Signature Protocols from Digital Signature Standards. Int. J. of Network Security 13(1), 22–30 (2011)Google Scholar
  8. 8.
    Takagi, T.: A fast RSA-type public-key primitive modulo pkq using hensel lifting. IEICE Transactions E87-A(1), 94–101 (2004)Google Scholar
  9. 9.
    Moldovyan, N.A.: An approach to shorten digital signature length. Computer Science Journal of Moldova 14(3(42), 390–396 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Moldovyan, N.A.: Short Signatures from Difficulty of Factorization Problem. Int. J. of Network Security 8(1), 90–95 (2009)Google Scholar
  11. 11.
    Moldovyan, N.A.: Fast Signatures Based on Non-Cyclic Finite Groups. Quasigroups and Related Systems 18, 83–94 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13, 361–396 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Koblitz, N., Menezes, A.J.: Another Look at Provable Security. J. Cryptology 20, 3–38 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandr Moldovyan
    • 1
  • Nikolay Moldovyan
    • 1
  • Evgenia Novikova
    • 2
  1. 1.Laboratory of CryptologySt. Petersburg Institute for Informatics and Automation (SPIIRAS)Saint-PetersburgRussia
  2. 2.Laboratory of Computer Security ProblemsSt. Petersburg Institute for Informatics and Automation (SPIIRAS)Saint-PetersburgRussia

Personalised recommendations