Optimization of Key Distribution Protocols Based on Extractors for Noisy Channels within Active Adversaries

  • Victor Yakovlev
  • Valery Korzhik
  • Mihail Bakaev
  • Guillermo Morales-Luna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7531)


We consider the information-theoretic secure key distribution problem (KDP) over noisy binary symmetric channels with public discussion and in the presence of an active adversary. There are several versions of such protocols proposed by Maurer, Wolf, Renner, Dodis, Reyzin et al. We describe two new versions of KDP for the same channel model and with the use of extractors as a mean of privacy amplification but with the goal to maximize the key rate under an optimization of the protocol parameters. There are two novelties in solution of KDP: we get the extractor’s seed directly from the distributed initial strings and we prove the main results in terms of explicit estimates without the use of the uncertain symbols O, Ω, Θ. Both asymptotic and non-asymptotic cases are presented. It is shown that the extractors can be superior to conventional hashing for very large lengths of initially distributed strings.


Active adversary cryptography extractors key distribution privacy amplification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knill, E.: Bulding Quantum Computers, 2007 IEEE Int. Symp. on Informational Theory. IEEE Information Theory Society Newsletter 58(4), 32–35 (2008)Google Scholar
  2. 2.
    Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical Journal 28(4), 656–715 (1949)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Hellman, M.E.: An extension of the Shannon theory approach to cryptography. IEEE Transactions on Information Theory 23(2), 289–294 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. Int. Conf. on Computers, Systems & Signal Processing (1984)Google Scholar
  5. 5.
    Aono, T., Higuchi, K., Ohira, T., Komiyama, B., Sasaoka, H.: Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels. IEEE Transactions on Antennas and Propagation 53(11), 3776–3784 (2005)CrossRefGoogle Scholar
  6. 6.
    Yakovlev, V., Korzhik, V., Kovajkin, Y., Morales-Luna, G.: Secret Key Agreement Over Multipath Channels Exploiting a Variable-Directional Antenna. Int. Jour. Adv. Computer Science & Applications 3(1), 172–178 (2012)Google Scholar
  7. 7.
    Wyner, A.: Wire-tap channel concept. Bell System Technical Journal 54, 1355–1387 (1975)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Korjik, V., Yakovlev, V.: Non-asymptotic estimates for efficiency of code jamming in a wire-tap channel. Problems of Information Transmission 17, 223–22 (1981)Google Scholar
  9. 9.
    Korjik, V., Yakovlev, V.: Capacity of communication channel with inner random coding. Problems of Information Transmission 28, 317–325 (1992)MathSciNetGoogle Scholar
  10. 10.
    Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Transactions on Information Theory 41(6), 1915–1923 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Transactions on Information Theory 39(3), 733–742 (1993)zbMATHCrossRefGoogle Scholar
  12. 12.
    Maurer, U.M.: Information-Theoretically Secure Secret-Key Agreement by NOT Authenticated Public Discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 209–225. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Maurer, U.M.: Protocols for Secret Key Agreement by Public Discussion Based on Common Information. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 461–470. Springer, Heidelberg (1993)Google Scholar
  14. 14.
    Maurer, U.M., Wolf, S.: Privacy Amplification Secure against Active Adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Maurer, U.M., Wolf, S.: Secret-key agreement over unauthenticated public channels iii: Privacy amplification. IEEE Trans. Information Theory 49(4), 839–851 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Maurer, U.M., Wolf, S.: Towards Characterizing when Information-Theoretic Secret Key Agreement is Possible. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 196–209. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Korzhik, V., Yakovlev, V., Sinuk, A.: Achieveability of the Key-Capacity in a Scenario of Key Sharing by Public Discussion and in the Presence of Passive Eavesdropper. In: Gorodetsky, V., Popyack, L.J., Skormin, V.A. (eds.) MMM-ACNS 2003. LNCS, vol. 2776, pp. 308–315. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Korzhik, V., Yakovlev, V., Sinuk, A.: Key Distribution Protocol Based on Noisy Channel and Error Detecting Codes. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS 2001. LNCS, vol. 2052, pp. 242–250. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Yakovlev, V., Korzhik, V., Morales-Luna, G.: Key Distribution Protocols Based on Noisy Channel in Presence of Active Adversary: Conventional and New Versions with Parameter Optimization. IEEE Transaction on Information Theory 54(6), 2535–2549 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yakovlev, V., Korzhik, V., Morales-Luna, G.: Non-asymptotic Performance Evalua-tion of Key Distribution Protocols Based on Noisy Channels in Presence of Active Adversary. In: Proc. X Spanish Meet. Cryptology and Information Security, Salamanca, pp. 63–68 (2008)Google Scholar
  21. 21.
    Renner, R., Wolf, S.: Unconditional Authenticity and Privacy from an Arbitrarily Weak Secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 78–95. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Renner, R., Wolf, S.: The Exact Price for Unconditionally Secure Asymmetric Cryptography. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 109–125. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust Fuzzy Extractors and Authenticated Key Agreement from Close Secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Kanukurthi, B., Reyzin, L.: Key Agreement from Close Secrets over Unsecured Channels. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 206–223. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Chandran, N., Kanukurthi, B., Ostrovsky, R., Reyzin, L.: Privacy amplifcation with asymptotically optimal entropy loss. Cryptology ePrint Archive (2010),
  26. 26.
    Trevisan, L.: Construction of extractors using pseudo-random generator. In: Proceedings of the 31 Annual ACM Symposium on Theory of Computing, Atlanta, pp. 141–148 (1999)Google Scholar
  27. 27.
    Raz, R., Reingold, O., Vadhan, S.P.: Extracting all the randomness and reducing the error in trevisan’s extractors. J. Comput. Syst. Sci. 65(1), 97–128 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Korjik, V., Morales-Luna, G., Balakirsky, V.: Privacy Amplification Theorem for Noisy Main Channel. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 18–26. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Korjik, V., Yakovlev, V., Chesnokov, R., Morales-Luna, G.: Performance Evaluation of Keyless Authentication Based on Noisy Channel. In: International Conference of Mathematical Methods, Models and Architectures for Computer Network Security. CCIS, vol. 1, pp. 115–126 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Victor Yakovlev
    • 1
  • Valery Korzhik
    • 1
  • Mihail Bakaev
    • 1
  • Guillermo Morales-Luna
    • 2
  1. 1.Department of Information Security of Telecommunication SystemsState University of TelecommunicationSt. PetersburgRussia
  2. 2.Computer ScienceCinvestav-IPNMexico CityMexico

Personalised recommendations