Skip to main content

Towards Dependable and Stable Perception in Smart Environments with Timing and Value Faults

  • Conference paper
  • 2098 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7613))

Abstract

Future physical environments are expected to be pervasively enriched with sensors, which mobile embedded applications can use to safely interact in and with that environment. Unfortunately, due to the open and uncertain nature of the environment and the wireless communication, it is not possible to provide strict a priori guarantees with regard to the quality and timeliness with which such environments can be perceived.

In this paper we take a look at the threats to a reliable perception of the environment, considering both timing and value faults. We discuss how such threats can be mitigated and we explore possible paths towards an integrated architecture to efficiently achieve a dependable and stable perception of smart environments in the presence of timing and value faults.

This work was partially supported by the EU through the KARYON project (FP7-288195) and the FCT through the Multiannual Funding Program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T., Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods. In: SenSys 2005: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, pp. 51–63. ACM Press (2005)

    Google Scholar 

  2. Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., Estrin, D.: Habitat monitoring with sensor networks. Communications of the ACM 47, 34–40 (2004)

    Article  Google Scholar 

  3. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket Location-Support System. In: 6th ACM MOBICOM, Boston, MA (August 2000)

    Google Scholar 

  4. Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, B., Nádas, A., Pap, G., Sallai, J., Frampton, K.: Sensor network-based countersniper system, pp. 1–12. ACM Press (2004)

    Google Scholar 

  5. Tsujita, W., Yoshino, A., Ishida, H., Moriizumi, T.: Gas sensor network for air-pollution monitoring. Sensors and Actuators B: Chemical 110(2), 304–311 (2005)

    Article  Google Scholar 

  6. Leonard, N.E., Paley, D., Lekien, F., Sepulchre, R., Fratantoni, D., Davis, R.: Collective motion, sensor networks, and ocean sampling. Proceedings of the IEEE, Special Issue on the Emerging Technology of Networked Control Systems (95), 48–74 (2007)

    Google Scholar 

  7. Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D.: Design and implementation of a high-fidelity ac metering network. In: Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, IPSN 2009, pp. 253–264. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  8. Basha, E.A., Ravela, S., Rus, D.: Model-based monitoring for early warning flood detection. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys 2008, pp. 295–308. ACM, New York (2008)

    Chapter  Google Scholar 

  9. Lee, U., Magistretti, E., Zhou, B., Gerla, M., Bellavista, P., Corradi, A.: Mobeyes: Smart mobs for urban monitoring with vehicular sensor networks. IEEE Wireless Communications 13(5) (2006)

    Google Scholar 

  10. Marques, L., Casimiro, A.: Lightweight dependable adaptation for wireless sensor networks. In: Proceedings of the 30th IEEE International Symposium on Reliable Distributed Systems Workshops, 4th International Workshop on Dependable Network Computing and Mobile Systems (DNCMS 2011), Madrid, Spain (2011)

    Google Scholar 

  11. Marques, L., Casimiro, A.: Evaluating lightweight dependable adaptation in 802.15.4 wireless sensor networks. Technical report, TR-2012-04, Dep. of Informatics, Univ. of Lisboa, http://docs.di.fc.ul.pt/handle/10455/6873

  12. Zug, S., Dietrich, A., Kaiser, J.: An architecture for a dependable distributed sensor system. IEEE T. Instrumentation and Measurement 60(2), 408–419 (2011)

    Article  Google Scholar 

  13. Chen, C., Brown, D., Sconyers, C., Zhang, B., Vachtsevanos, G., Orchard, M.E.: An integrated architecture for fault diagnosis and failure prognosis of complex engineering systems. Expert Syst. Appl. 39(10), 9031–9040 (2012)

    Article  Google Scholar 

  14. Marzullo, K.: Tolerating failures of continuous-valued sensors. ACM Trans. Comput. Syst. 8(4), 284–304 (1990)

    Article  Google Scholar 

  15. Koushanfar, F., Potkonjak, M., Sangiovanni-Vincentelli, A.: On-line fault detection of sensor measurements. In: IEEE Sensors, pp. 974–980 (2003)

    Google Scholar 

  16. Isermann, R.: Model-based fault detection and diagnosis: status and applications. In: Proceedings of the 16th IFAC Symposium on Automatic Control in Aerospace, St., pp. 71–85 (2004)

    Google Scholar 

  17. Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based damage identification methods. The Shock and Vibration Digest 30, 91–105 (1998)

    Article  Google Scholar 

  18. Makarenko, A., Durrant-whyte, H.: Decentralized data fusion and control in active sensor networks. In: Proceedings of the Seventh International Conference on Information Fusion (2004)

    Google Scholar 

  19. Zug, S., Kaiser, J.: An approach towards smart fault-tolerant sensors. In: Proceedings of IEEE International Workshop on Robotic and Sensors Environments (ROSE 2009), Lecco, Italy (November 2009)

    Google Scholar 

  20. Rufino, J., Veríssimo, P., Almeida, C., Arroz, G.: Integrating inaccessibility control and timer management in canely. In: ETFA, pp. 348–355. IEEE (2006)

    Google Scholar 

  21. Souza, J.L.R., Rufino, J.: An approach to enhance the timeliness of wireless communications. In: The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM), Lisbon (November 2011)

    Google Scholar 

  22. Li, Q., Rus, D.: Global clock synchronization in sensor networks. IEEE Transactions on Computers 55(2), 214–226 (2006)

    Google Scholar 

  23. Yoon, S., Veerarittiphan, C., Sichitiu, M.L.: Tiny-sync: Tight time synchronization for wireless sensor networks. ACM Trans. Sen. Netw. 3(2) (June 2007)

    Google Scholar 

  24. Liang, C.J.M.: Interference characterization and mitigation in large-scale wireless sensor networks (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marques, L., Casimiro, A. (2012). Towards Dependable and Stable Perception in Smart Environments with Timing and Value Faults. In: Ortmeier, F., Daniel, P. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2012. Lecture Notes in Computer Science, vol 7613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33675-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33675-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33674-4

  • Online ISBN: 978-3-642-33675-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics