Skip to main content

International Parity Conditions in a Two-Country OLG Model Under Free Trade

  • Chapter
  • First Online:
Growth and International Trade

Part of the book series: Springer Texts in Business and Economics ((STBE))

  • 1947 Accesses

Abstract

This chapter extends the basic OLG growth model of Chap. 2 into a two-country OLG model with free trade of two commodities and government bonds but internationally immobile labor and capital. In the original version of the model set-up young households in both countries hold national fiat money for transaction purposes. The intertemporal choice problem of young households is split into two parts: first, the determination of utility maximizing asset holding and consumption expenditures and second, the expenditure minimizing allocation of the consumption basket on the two commodities produced domestically and abroad. From the latter the purchasing power parity in its absolute and relative version is derived, while from the former the uncovered interest parity condition is obtained. Finally, the basic neoclassical (Heckscher-Ohlin) model of inter-sectoral trade is presented as a special case of the general two-country model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In later chapters we will change the symbols indicating a country or currency area: instead of \( I \) we will delete this symbol and substitute \( ^{*} \) for \( A \).

References

  • Bhagwati, J. N., Panagariya, A., & Srinivasan, T. N. (1998). Lectures on international trade (2nd ed.). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Buiter, W. H. (1981). Time preference and international lending and borrowing in an overlapping generations model. Journal of Political Economy, 89, 769–797.

    Article  Google Scholar 

  • Burda, M., & Wyplosz, C. (2009). Macroeconomics: A European text (5th ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Chin, D. M., & Miller, P. J. (1998). Fixed vs. floating exchange rates: A dynamic general equilibrium analysis. European Economic Review, 42, 1221–1250.

    Article  Google Scholar 

  • Eicher, T. S., Mutti, J. H., & Turnovsky, M. H. (2009). International economics (7th ed.). London, New York: Routledge.

    Google Scholar 

  • Feenstra, R. C., & Taylor, A. M. (2011). International economics: International edition (2nd ed.). New York: Worth Publishers.

    Google Scholar 

  • Fisher, I. (1930). The theory of interest. New York: Macmillan.

    Google Scholar 

  • Galor, O., & Lin, S. (1994). Terms of trade and current account dynamics: A methodological critique. International Economic Review, 35(4), 1001–1014.

    Article  Google Scholar 

  • Gandolfo, G. (1994). International economics I. The pure theory of international trade (2nd ed.). Berlin: Springer. et al.

    Google Scholar 

  • Heckscher, E. (1919). The effects of foreign trade on the distribution of income. Economic Tidskrift, 21, 497–512.

    Google Scholar 

  • Krugman, P. R., Obstfeld, M., & Melitz, M. J. (2012). International economics: Theory and policy (9th ed.). Boston: Prentice Hall International.

    Google Scholar 

  • Kuhn, H. W., & Tucker, A. W. (1951). Non-linear programming. In B. Neyman (Ed.), Proceedings of the second Berkeley symposium on mathematics, statistics and probability. California: University of California Press.

    Google Scholar 

  • Obstfeld, M., & Rogoff, K. (1996). Foundations of international macroeconomics. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Ohlin, B. (1933). Interregional and international trade. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Ramsey, F. (1928). A mathematical theory of saving. The Economic Journal, 38, 543–559.

    Article  Google Scholar 

  • Takayama, A. (1974). Mathematical economics. Hinsdale: The Dryden Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Farmer .

Mathematical Appendix

Mathematical Appendix

Not in every case an optimization problem has a so-called interior solution, where all optimization variables are strictly positive. If some variables take the value zero at the optimum, the solution is called a corner solution. When the solution to an optimization problem is a corner solution, the classical optimization conditions in the appendix of Chap. 2 cannot be applied. Therefore, we need the conditions of Kuhn and Tucker (1951) for solving a non-linear optimization problem (= Kuhn-Tucker conditions).

It would be too time-consuming to derive these conditions in a mathematically exact way. The interested reader is referred to Takayama (1974, 86 ff.). We will simply apply these first-order conditions to solve the optimization problem of the young household in Sect. 9.4.

Like in classical optimization (see the appendix to Chap. 2) we transform the maximization problem under constraints by means of a Lagrangian into a saddle point problem. The Lagrangian at hand is more complicated than that in Chap. 2, because two constraints (rather than one constraint) have to be considered. Consequently we have to distinguish between two Lagrange multipliers, \( {\lambda_t}\ \mathrm{ and}\ {\lambda_{\mathrm{ t}+1}} \).

The Lagrangian of the domestic young household’s choice problem is:

$$ {\varLambda^I}\left( {c_t^{II,1 },c_t^{AI,1 },c_{t+1}^{II,2 },c_{t+1}^{AI,2 },I_t^{I,I },I_t^{A,I },\lambda_t^I,\lambda_{t+1}^I} \right) $$
$$ \equiv \ln \left( {c_t^{II,1 }+c_t^{AI,1 }} \right)+\beta\ln \left( {c_{t+1}^{II,2 }+c_{t+1}^{AI,2 }} \right) $$
$$ +\lambda_t^I\left( {W_t^I-P_t^{x,I }c_t^{II,1 }-P_t^{x,A }{E_t}c_t^{AI,1 }-P_t^{y,I}\left( {\frac{{I_t^{I,I }}}{{{L^I}}}+\left( {1-\delta } \right)\frac{{K_t^I}}{{{L^I}}}} \right)} \right.\left. {-P_t^{y,A }{E_t}\frac{{I_t^{A,I }}}{{{L^I}}}} \right) $$
$$ {+\lambda_{t+1}^I\left[ {\left( {Q_{t+1}^I+(1-\delta )P_{t+1}^{y,I }} \right)\left( {\frac{{I_t^{I,I }}}{{{L^I}}}+\frac{{I_t^{A,I }}}{{{L^I}}}+(1-\delta )\frac{{K_t^I}}{{{L^I}}}} \right)-P_{t+1}^{x,I }c_{t+1}^{II,2 }-P_{t+1}^{x,A }{E_{t+1 }}c_{t+1}^{AI,2 }} \right]}. $$
(9.26)

Next, we calculate all first partial derivatives of the Lagrangian Eq. 9.26 and set up the following Kuhn-Tucker conditions:

$$ \frac{{\partial {\varLambda^I}}}{{\partial c_t^{II,1 }}}=\frac{1}{{c_t^{II,1 }+c_t^{AI,1 }}}-\lambda_t^IP_t^{x,I}\le 0,\ \frac{{\partial {\varLambda^I}}}{{\partial c_t^{II,1 }}}c_t^{II,1 }=0,\;c_t^{II,1}\ge 0, $$
$$ \frac{{\partial {\varLambda^I}}}{{\partial c_t^{AI,1 }}}=\frac{1}{{c_t^{II,1 }+c_t^{AI,1 }}}-\lambda_t^I{E_t}P_t^{x,A}\le 0,\ \frac{{\partial {\varLambda^I}}}{{\partial c_t^{AI,1 }}}c_t^{AI,1 }=0,\;c_t^{AI,1}\ge 0, $$
$$ \frac{{\partial {\varLambda^I}}}{{\partial I_t^{I,I }}}=-\lambda_t^I\frac{{P_t^{y,I }}}{{{L^I}}}+\lambda_{t+1}^I\frac{{\left( {Q_{t+1}^I+\left( {1-\delta } \right)P_{t+1}^{y,I }} \right)}}{{{L^I}}}\le 0,\ \frac{{\partial {\varLambda^I}}}{{\partial I_t^{I,I }}}I_t^{I,I }=0,\;I_t^{I,I}\ge 0, $$
$$ \frac{{\partial {\varLambda^I}}}{{\partial I_t^{A,I }}}=-\lambda_t^I\frac{{P_t^{y,A }E{}_t}}{{{L^I}}}+\lambda_{t+1}^I\frac{{\left( {Q_{t+1}^I+\left( {1-\delta } \right)P_{t+1}^{y,I }} \right)}}{{{L^I}}}\le 0,\ \frac{{\partial {\varLambda^I}}}{{\partial I_t^{A,I }}}I_t^{A,I }=0,\;I_t^{A,I}\ge 0, $$
$$ \frac{{\partial {\varLambda^I}}}{{\partial c_{t+1}^{II,2 }}}=\frac{\beta }{{c_{t+1}^{II,2 }+c_{t+1}^{AI,2 }}}-\lambda_{t+1}^IP_{t+1}^{x,I}\le 0,\ \frac{{\partial {\varLambda^I}}}{{\partial c_{t+1}^{II,2 }}}c_{t+1}^{II,2 }=0,\;c_{t+1}^{II,2}\ge 0, $$
$$ \frac{{\partial {\varLambda^I}}}{{\partial c_{t+1}^{AI,2 }}}=\frac{\beta }{{c_{t+1}^{II,2 }+c_{t+1}^{AI,2 }}}-\lambda_{t+1}^IP_{t+1}^{x,A }{E_{t+1 }}\le 0,\ \frac{{\partial {\varLambda^I}}}{{\partial c_{t+1}^{AI,2 }}}c_{t+1}^{AI,2 }=0,\;c_{t+1}^{AI,2}\ge 0, $$
$$ \frac{{\partial {\varLambda^I}}}{{\partial \lambda_t^I}}=\left( {\mathrm{ active}\text{--}\mathrm{ period}\ \mathrm{ budget}\ \mathrm{ constraint}} \right)\ge 0,\ \frac{{\partial {\varLambda^I}}}{{\partial \lambda_t^I}}\lambda_t^I=0,\;\lambda_t^I\ge 0, $$
$$ \frac{{\partial {\varLambda^I}}}{{\partial \lambda_{t+1}^I}}=\left( {\mathrm{ retirement}\text{--}\mathrm{ period}\ \mathrm{ budget}\ \mathrm{ constraint}} \right)\ge 0,\ \frac{{\partial {\varLambda^I}}}{{\partial \lambda_{t+1}^I}}\lambda_{t+1}^I=0,\;\lambda_{t+1}^I\ge 0. $$

Since the log-linear utility function is concave, the saddle-point conditions are sufficient for the solution of the optimization problem in 9.5.

To illustrate the mechanics of the Kuhn-Tucker conditions, we assume for demonstration purposes that the no-arbitrage condition for the x-good is not fulfilled, i.e. \( P_t^{x,I }<{E_t}P_t^{x,A } \). The young household wants to consume a positive amount of the x-good and due to the price constellation \( c_t^{II,1 }>0 \) is reasonable. According to the first line of the Kuhn-Tucker conditions \( 1/(c_t^{II,1 }+c_t^{AI,1 })=\lambda_t^IP_t^{x,I } \). This implies, together with the assumed international price constellation for x, \( 1/(c_t^{II,1 }+c_t^{AI,1 })-\lambda_t^IP_t^{x,A }{E_t}<0 \) and \( c_t^{{AI\rm{,}1}}=0 \) in the second row of the Kuhn-Tucker conditions. This is in contradiction to the assumption that all level variables are strictly positive at the utility maximizing point. Thus, \( P_t^{x,I }<{E_t}P_t^{x,A } \) cannot be compatible with a utility maximizing situation and the no-arbitrage condition holds.

At the optimum all variables of the Lagrangian are strictly positive. Therefore, the Kuhn-Tucker conditions collapse to the classical first-order conditions. All inequalities of the Kuhn-Tucker conditions become equalities. Using the equations of the first two lines \( {1 \left/ {{(c_t^{II,1 }+c_t^{AI,1 })}} \right.}=\lambda_t^IP_t^{x,I } \) and \( {1 \left/ {{(c_t^{II,1 }+c_t^{AI,1 })}} \right.}=\lambda_t^IP_t^{x,A }{E_t} \), we obtain immediately that:

$$ P_t^{x,I }={E_t}P_t^{x,A }. $$
(9.27)

The equations of the 3rd and 4th as well as of the 5th and 6th lines imply:

$$ P_t^{y,I }={E_t}P_t^{y,A }, $$
(9.28)
$$ P_{t+1}^{x,I }={E_{t+1 }}P_{t+1}^{x,A }. $$
(9.29)

The budget constraints are the consequence of the strict positivity of the Lagrangian multipliers. Considering Eqs. 9.27, 9.28 and 9.29 in the budget constraints, these can be equivalently written as:

$$ P_t^{x,I }c_t^{I,1 }+P_t^{y,I}\left( {\frac{{I_t^I}}{{{L^I}}}+\left( {1-\delta } \right)\frac{{K_t^I}}{{{L^I}}}} \right)=W_t^I, $$
(9.30)
$$ P_{t+1}^{x,I }c_{t+1}^{I,2 }=\left( {Q_{t+1}^I+\left( {1-\delta } \right)P_{t+1}^{y,I }} \right)\left( {\frac{{I_t^I}}{{{L^I}}}+\left( {1-\delta } \right)\frac{{K_t^I}}{{{L^I}}}} \right), $$
(9.31)

where:

$$ c_t^{I,1}\equiv c_t^{II,1 }+c_t^{AI,1 },\ c_{t+1}^{I,2}\equiv c_{t+1}^{II,2 }+c_{t+1}^{AI,2 },\ \frac{{I_t^I}}{{{L^I}}}\equiv \frac{{I_t^{I,I }}}{{{L^I}}}+\frac{{I_t^{A,I }}}{{{L^I}}}. $$

Dividing both sides of Eq. 9.30 by \( P_t^{y,I } \) and both sides of Eq. 9.31 by \( P_{t+1}^{y,I } \) and labeling price ratios by lower case letters, guides us to the transformed choice problem of young households as mentioned in the main text.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farmer, K., Schelnast, M. (2013). International Parity Conditions in a Two-Country OLG Model Under Free Trade. In: Growth and International Trade. Springer Texts in Business and Economics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33669-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33669-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33668-3

  • Online ISBN: 978-3-642-33669-0

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics