Skip to main content

Public Debt Reduction in Advanced Countries and Its Impacts on Emerging Countries

  • Chapter
  • First Online:
Growth and International Trade

Part of the book series: Springer Texts in Business and Economics ((STBE))

  • 1916 Accesses

Abstract

Financial crises associated with banking crises leave heavy fiscal legacies. For the USA e.g. an increase in the gross government debt to GDP ratio towards more than 100 % is predicted by 2012. Due to its unsustainability a significant reduction of public debt in the USA and in other advanced countries seems to be indispensable. However, as shown in this paper, the long run welfare effects of debt reduction in advanced countries at home as well as on emerging countries are not in accordance with debt reduction necessities. In particular, we show that domestic and foreign welfare decrease when the domestic country (USA) reduces public debt, given that this country has a negative external balance and a lower capital production share than the other country (China) and that dynamic inefficiency holds.

This chapter draws heavily on Bednar-Friedl and Farmer (Public debt, terms of trade and welfare: The role or capital production shares, external balances and dynamic (in)efficiency. International Economic Journal, 26(2), 317–349) as well as on Farmer and Schelnast (Public debt reduction in advanced countries and its impact on emerging countries. Paper presented at the Annual Conference of the International Atlantic Economic Society, Istanbul).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The whole spectrum of steady-state solutions is characterized in Farmer and Zotti (2010) for internationally equal saving rates, in Farmer (2011) for unequal saving rates but for equal production elasticities of capital and in Bednar-Friedl and Farmer (2012) for equal saving rates but differences in production elasticities. In particular, the upper limits for the domestic and foreign public debt level where only one non-trivial steady-state solution occurs are explicitly calculated.

  2. 2.

    In log-linear, CD OLG models conditions for the existence of steady states often imply dynamic stability as in the closed economy models of Ono (2002) and Farmer and Wendner (2003). For more details see again Bednar-Friedl and Farmer (2012).

  3. 3.

    Zee (1987, 617) assumes a similar restriction which is fulfilled for not too large \( {b \left/ {k} \right.}\ ({{{{b^{*}}}} \left/ {{{k^{*}}}} \right.}) \).

  4. 4.

    Note, however, that the net foreign position is determined endogenously in the model. Thus, all parameters (including the level of public debt) and the endogenous variables \( e, \) \( k \) and \( {k^{*}} \) determine the countries’ net foreign asset positions.

  5. 5.

    It is worth noting that Zee (1987, 614) claims that the terms of trade (= inverse of our real exchange rate) in general equilibrium, i.e. when both k and \( {k^{*}} \) adapt to a change in b, depend on the lending-borrowing status (in our terminology net foreign asset position) of Home. As our analysis shows, the real exchange rates depend on the lending-borrowing status of Home only for given capital intensities and not in general equilibrium. Thus, Zee’s analysis acknowledges only the shift of the AA-curve \( {de \left/ {{d{b_{{\left| {AA} \right.}}}}} \right.} \).

  6. 6.

    To simplify exposition, we set \( a=1 \).

  7. 7.

    See Appendix.

  8. 8.

    Clearly, if the interest and growth factor difference is smaller than the net foreign asset term, then the Persson result of a positive total welfare effect emerges.

  9. 9.

    The debt to GDP ratio of China in 2016 is forecasted as 9.7 %, while the US debt to GDP ratio will be 111.9 % in 2016 (IMF 2011).

  10. 10.

    The average yearly growth-rate of world GDP was 3.3 % during the period of 1980–2010 (IMF 2011).

  11. 11.

    Uniqueness can also be shown by the fact that \( F(k) \) is strictly concave, which is true since \( {F}^{\prime}(k)=\alpha -\sigma {{(\alpha -{\alpha^{*}})}^2}(1-\alpha ){q^2}/{{[{q^2}(\alpha +{\alpha^{*}})-2\alpha {\alpha^{*}}{G^A}]}^2} \), and hence \( {F}^{\prime\prime}(k)<0 \).

  12. 12.

    These claims can easily be verified by focusing on the Golden Rule case.

  13. 13.

    Extensive numerical investigation of all admissible parameter sets proves these claims most easily.

References

  • Azariadis, C. (1993). Intertemporal macroeconomics. Oxford: Blackwell.

    Google Scholar 

  • Bai, C. E., & Qian, Z. (2010). The factor income distribution in China: 1978–2007. China Economic Review, 21(4), 650–670.

    Article  Google Scholar 

  • Bednar-Friedl, B., & Farmer, K. (2012). Public debt, terms of trade and welfare: The role or capital production shares, external balances and dynamic (in)efficiency. International Economic Journal, 26(2), 317–349.

    Article  Google Scholar 

  • Buiter, W. H. (1981). Time preference and international lending and borrowing in an overlapping-generations model. Journal of Political Economy, 89, 769–797.

    Article  Google Scholar 

  • Caselli, F., & Feyrer, J. (2007). The marginal product of capital. Quarterly Journal of Economics, 122(2), 535–568.

    Article  Google Scholar 

  • Diamond, P. A. (1965). National debt in a neoclassical growth model. American Economic Review, 55, 1135–1150.

    Google Scholar 

  • Farmer, K., & Wendner, R. (2003). A two-sector overlapping-generations model with heterogeneous capital. Economic Theory, 22, 773–792.

    Article  Google Scholar 

  • Farmer, K. (2010). Public-debt sustainability, exchange rates, and country-specific saving rates. In: A. Bayar, C. Erbil & D. Ozdemir (Eds.), Proceedings of Ecomod 2010. Brussels: Ecomod.

    Google Scholar 

  • Farmer, K., & Zotti, J. (2010). Sustainable government debt in a two-good, two-country overlapping generations model. International Review of Economics, 57, 289–316.

    Article  Google Scholar 

  • Farmer, K. (2011). Public-debt sustainability, real exchange rate, and country-specific saving rates. International Advances in Economic Research, 17, 45–65.

    Article  Google Scholar 

  • Farmer, K., & Schelnast, M. (2012, March 29–31). Public debt reduction in advanced countries and its impact on emerging countries. Paper presented at the Annual Conference of the International Atlantic Economic Society, Istanbul.

    Google Scholar 

  • Feldstein, M. (1986). U.S. budget deficits and the European economies: Resolving the political economy puzzle. American Economic Review, 76, 342–346. Papers and Proceedings.

    Google Scholar 

  • Frenkel, J. A., & Razin, A. (1986). Fiscal policies in the world economy. Journal of Political Economy, 94(3), 564–594.

    Article  Google Scholar 

  • IMF. (2006). World Economic Outlook. Washington, DC: IMF.

    Google Scholar 

  • IMF. (2008). World Economic Outlook. Washington, DC: IMF.

    Google Scholar 

  • IMF. (2011). World Economic Outlook. Washington, DC: IMF.

    Google Scholar 

  • Lin, S. (1994). Government debt and the real exchange rate in an overlapping generations model. Journal of Economic Integration, 9(1), 94–105.

    Article  Google Scholar 

  • Ma, G., & Yi, W. (2011). Why is the Chinese saving rate so high? World Economics, 12(1), 1–26.

    Google Scholar 

  • OECD. (2011). Economics: Key tables from OECD. http://dx.doi.org/10.1787/gov-debt-table-2011-1-en. Accessed 14 February 2012.

  • Ono, T. (2002). The effects of emission permits on growth and the environment. Environmental and Resource Economics, 21, 75–87.

    Article  Google Scholar 

  • Ono, Y., & Shibata, A. (2005). Fiscal spending, relative-price dynamics and welfare in a world economy. Review of International Economics, 13(2), 216–236.

    Article  Google Scholar 

  • Persson, T. (1985). Deficits and intergenerational welfare in open economies. Journal of International Economics, 19, 67–84.

    Article  Google Scholar 

  • Rankin, N., & Roffia, B. (2003). Maximum sustainable government debt in the overlapping generations model. The Manchester School, 71(3), 217–241.

    Article  Google Scholar 

  • Sydsaeter, K., Hammond, P., Seierstad, A. & Stroem, A. (2010). Further Mathematics for Economic Analysis. Harlow et al.: Prentice Hall.

    Google Scholar 

  • Zee, H. H. (1987). Government debt, capital accumulation and the terms of trade in a model of interdependent economies. Economic Inquiry, 25, 599–618.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Farmer .

Mathematical Appendix

Mathematical Appendix

1.1 Proof of Proposition 15.1

It is easy to see that a solution of Eqs. 15.7, 15.8 and 15.9 is equivalent to solving the equations:

$$ k=F\left( {k;b,{b^{*}}} \right)\equiv \left\{ {\frac{{\left[ {\zeta \left( {1-\alpha } \right)\sigma +\left( {1-\zeta } \right)\left( {1-{\alpha^{*}}} \right)\sigma\eta (k)} \right]}}{{\left[ {\zeta +\left( {1-\zeta } \right)\left( {{{{{\alpha^{*}}}} \left/ {\alpha } \right.}} \right)\eta (k)} \right]}}} \right\}\frac{qk }{{\alpha {G^A}}}- $$
$$ -\left\{ {\frac{{\left[ {\zeta b\sigma +\left( {1-\zeta } \right){b^{*}}\sigma \left( {{k \left/ {{{k^{*}}}} \right.}} \right)\eta (k)} \right]}}{{\left[ {\zeta +\left( {1-\zeta } \right)\left( {{{{{\alpha^{*}}}} \left/ {\alpha } \right.}} \right)\eta (k)} \right]}}} \right\}\frac{q}{{{G^A}}}-\frac{{\left[ {\zeta b\left( {1-\sigma } \right)+\left( {1-\zeta } \right){b^{*}}\left( {1-\sigma } \right)\left( {{k \left/ {{{k^{*}}}} \right.}} \right)\eta (k)} \right]}}{{\left[ {\zeta +\left( {1-\zeta } \right)\left( {{{{{\alpha^{*}}}} \left/ {\alpha } \right.}} \right)\eta (k)} \right]}}, $$
$$ \eta (k)\equiv \frac{{q-\alpha {G^A}}}{{q-{\alpha^{*}}{G^A}}},k\in \left( {0,\tilde{k}} \right), $$
$$ \tilde{k}\equiv {{\left[ {\left( {\frac{\alpha }{{{\alpha^{*}}}}} \right)\left( {\frac{M}{{{G^A}}}} \right)} \right]}^{{\frac{1}{{1-\alpha }}}}}, $$
$$ e=\left[ {\frac{{\left( {1-\zeta } \right)}}{\zeta}\frac{k}{{{k^{*}}}}} \right]\left[ {\frac{\alpha }{{{\alpha^{*}}}}\frac{{\left( {q-\alpha {G^A}} \right)}}{{\left( {q-{\alpha^{*}}{G^A}} \right)}}} \right], $$
$$ {k^{*}}={{\left[ {\left( {\frac{{{\alpha^{*}}{M^{*}}}}{{\alpha M}}} \right)} \right]}^{{\frac{1}{{1-\alpha *}}}}}{k^{{\frac{{1-\alpha }}{{1-\alpha *}}}}}. $$

To prove proposition 15.1, we start with the special case of \( b={b^{*}}=0 \), where \( F(k;0,0) \) = \( [\zeta (1-\alpha )\sigma +(1-\zeta )(1-{\alpha^{*}}){\sigma^{*}}\eta (k)]/[\zeta +(1-\zeta )({\alpha^{*}}/\alpha )\eta (k)][qk/(\alpha {G^A})] \) holds. Note first that \( {\lim_{{k\to 0}}}F(k)=0 \) and \( {\lim_{{k\to 0}}}{F_k}(k)=\infty \) since \( {\lim_{{k\to 0}}}\eta (k)=1 \).

To assess the existence of intersection points of \( F(k) \) and the 45 ° line for \( k\in (0,\tilde{k}) \) in a (\( k,F(k) \))-diagram (see Fig. 15.1), the cases of \( \alpha <{\alpha^{*}} \) (case 1) and of \( \alpha >{\alpha^{*}} \) (case 2) are to be distinguished.

In case 1 \( {\lim_{{k\to \tilde{k}}}}\eta (k)=\infty \), hence \( {\lim_{{k\to \tilde{k}}}}F(k)={\lim_{{k\to \tilde{k}}}}\{[\zeta (1-\alpha )\sigma ]/\eta (k)+\) \( +(1-\zeta )(1-{\alpha^{*}}){\sigma^{*}}\} \)/\( [\zeta /\eta (k)+(1-\zeta )({\alpha^{*}}/\alpha )](M/{G^A}){{\tilde{k}}^{\alpha }}{k^{\alpha }}=(\alpha /{\alpha^{*}})(1-{\alpha^{*}}){\sigma^{*}}\) \( (M/{G^A}){{\tilde{k}}^{\alpha }}=(1-{\alpha^{*}}){\sigma^{*}}\tilde{k} \). Since \( F(k) \) is continuous on the interval (\( 0,\tilde{k} \)), the slope of \(F(k) \) at the origin is certainly larger than one (= slope of 45 ° line) and the value of \(F(k) \) at \( k=\tilde{k} \) (= lim \( _{{k\to \tilde{k}}} \) \( F(k)=(1-{\alpha^{*}}){\sigma^{*}}\tilde{k} \)) is less than the value of the 45 ° line, an intermediate value theorem ensures the existence of at least one \( k\in (0,\tilde{k}) \) such that \( k=F(k) \). The solution of this equation is unique, which can be seen by setting \( {k^{{1-\alpha }}}=z \) and calculating the negative root of the polynomial \( ({\alpha^{*}}/\alpha ){{({G^A}/M)}^2}{z^2}-\) \( \{[\zeta +(1-\zeta )({\alpha^{*}}/\alpha )]+[\zeta (1-\alpha )\sigma ({\alpha^{*}}/\alpha )+ \) \( (1-\zeta )(1-{\alpha^{*}}){\sigma^{*}}]\} \) \( ({G^A}/M)z+\zeta (1-\alpha )\sigma \) \( +(1-\zeta )(1-{\alpha^{*}}){\sigma^{*}}=0. \) Footnote 11 Moreover, it is immediate that \( k=0 \) is the second steady-state solution.

In case 2 \( {\lim_{{k\to \tilde{k}}}}\eta (k)=-\infty \). Thus, there exists a \( \hat{k}<\tilde{k} \) such that \( \eta (\hat{k})=0\Leftrightarrow \hat{k}={{(M/{G^A})}^{{1/(1-\alpha )}}} \). As above for case 1, it is easy to see that lim \( _{{k\to \tilde{k}}} \) \( F(k)=(1-\alpha )\sigma \hat{k}<\hat{k} \). Substituting \( \hat{k} \) for \( \tilde{k} \) the argumentation above can be reiterated, which demonstrates the existence of a \( k\in (0,\hat{k}) \) such that \( k=F(k) \). Clearly, this solution is also unique and there is also the second steady state \( k=0 \).

Next, consider the general \( F(k;b,{b^{*}}) \) function, which is governed also by the policy parameters \( b\in (0,\bar{b}) \) and \( {b^{*}}\in (0,{{\bar{b}}^{*}}) \). In contrast to the special case above, now \( {\lim_{{k\to 0}}}F(k;b,{b^{*}})=-\infty \), while as above \( {\lim_{{k\to 0}}}{F_k}(k;b,{b^{*}})=\infty \). As above, we have to distinguish case 1 (\( \alpha <{\alpha^{*}} \)) and case 2 (\( \alpha >{\alpha^{*}} \)) (for \( \alpha ={\alpha^{*}} \) see Farmer 2010, 37).

In case 1 holds lim \( _{{k\to \tilde{k}}} \) \( F(k;b,{b^{*}})=(1-{\alpha^{*}}){\sigma^{*}}\tilde{k}-[1-{\sigma^{*}}(1-{\alpha^{*}})]{b^{*}}\) \( \times {{(\alpha M/{\alpha^{*}}{M^{*}})}^{{{1 \left/ {{(1-{\alpha^{*}})}} \right.}}}}{{(\tilde{k})}^{{{{{(\alpha -{\alpha^{*}})}} \left/ {{(1-{\alpha^{*}})}} \right.}}}} \) \( <\tilde{k}. \) Note that for special case 1 of \( b={b^{*}}=0 \)there are exactly two steady-state solutions. Moreover, \( F(k;b,{b^{*}}) \) depends negatively on \( b \) and \( {b^{*}} \) with \( {\lim_{{b\to \infty }}}F(k;b,{b^{*}})=-\infty \) and lim \( _{{{b^{*}}\to \infty }} \) \( F(k;b,{b^{*}})=-\infty \). Since \( F(k;b,{b^{*}}) \) depends continuously on \( b \) and \( {b^{*}} \), we can conclude that for \( b\in (0,\bar{b}) \) . and \( {b^{*}}\in (0,{{\bar{b}}^{*}}) \) there exist exactly two non-trivial steady-state solutions \( {k^L}=F({k^L};b,{b^{*}}) \) and \( {k^H}=F({k^H};b,{b^{*}}) \) with \( 0<{k^L}<{k^H}<\tilde{k} \).

By substituting \( \hat{k} \) for \( \tilde{k} \) in case 2 we can reiterate the argumentation of case 1 and show that for \( b\in (0,\bar{b}) \) and \( {b^{*}}\in (0,{{\bar{b}}^{*}}) \) there also exist exactly two non-trivial steady-state solutions \( {k^L}=F({k^L};b,{b^{*}}) \) and \( {k^H}=F({k^H};b,{b^{*}}) \) with \( 0<{k^L}<{k^H}<\hat{k} \).

1.2 The Jacobian Matrix

The Jacobian matrix of the dynamic system 15.7, 15.8 and 15.9 \( J(e,k,{k^{{*}}}) \) reads as follows:

$$ J(e,k,{k^{*}})=\left[ {\begin{array}{lllllllll}{{{{\partial {e_{t+1 }}}} \left/ {{\partial {e_t}}} \right.}} & {{{{\partial {e_{t+1 }}}} \left/ {{\partial {k_t}}} \right.}} & {{{{\partial {e_{t+1 }}}} \left/ {{\partial k_t^{*}}} \right.}} \\ {{{{\partial k_{t+1 }}} \left/ {{\partial {e_t}}} \right.}} & {{{{\partial {k_{t+1 }}}} \left/ {{\partial {k_t}}} \right.}} & {{{{\partial {k_{t+1 }}}} \left/ {{\partial k_t^{*}}} \right.}} \\ {{{{\partial k_{t+1}^{*}}} \left/ {{\partial {e_t}}} \right.}} & {{{{\partial k_{t+1}^{*}}} \left/ {{\partial {k_t}}} \right.}} & {{{{\partial k_{t+1}^{*}}} \left/ {{\partial k_t^{*}}} \right.}} \\ \end{array}} \right]\equiv \left[ {\begin{array}{llllllllll}{{j_{11 }}} & {{j_{12 }}} & {{j_{13 }}} \\ {{j_{21 }}} & {{j_{22 }}} & {{j_{23 }}} \\ {{j_{31 }}} & {{j_{32 }}} & {{j_{33 }}} \\ \end{array}} \right], $$
(15.15)

with

$$ {j_{11 }}=1+\left( {1-\alpha } \right)\left\{ {{{{\left[ {\left( {1-\zeta } \right)H-\zeta \Phi } \right]}} \left/ {k} \right.}} \right\}+\left( {1-{\alpha^{*}}} \right)\left\{ {{{{\left[ {\zeta {H^{*}}-\left( {1-\zeta } \right){\Phi^{*}}} \right]}} \left/ {{{k^{*}}}} \right.}} \right\}, $$
$$ \begin{array}{llllll} {j_{12 }}=-\left[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \right]\left\{ {\left[ {{{{\left( {1-{\alpha^{*}}} \right)}} \left/ {{{k^{*}}}} \right.}} \right]\left( {1-\zeta } \right)\left[ {1-\left( {1-\alpha } \right)\sigma \left( {1+{b \left/ {k} \right.}} \right)} \right]+} \right. \hfill \\ \qquad+ \left. {\left[ {{{{\left( {1-\alpha } \right)}} \left/ {k} \right.}} \right]e\left[ {\left( {1-\zeta } \right)+\zeta \left( {1-\alpha } \right)\sigma \left( {1+{b \left/ {k} \right.}} \right)} \right]} \right\}, \hfill \\ \end{array} $$
$$ {j_{13 }}= e\left[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \right]\left\{ {\left[ {{{{\left( {1-{\alpha^{*}}} \right)}} \left/ {{{k^{*}}}} \right.}} \right]\left[ {\zeta +\left( {1-\zeta } \right)\left( {1-{\alpha^{*}}} \right){\sigma^{*}}\left( {1+{{{{b^{*}}}} \left/ {{{k^{*}}}} \right.}} \right)} \right]+} \right. \hfill \\+ \left. {\left[ {{{{\left( {1-\alpha } \right)}} \left/ {k} \right.}} \right]e\zeta \left[ {1-\left( {1-{\alpha^{*}}} \right){\sigma^{*}}\left( {1+{{{{{{{b^{*}}}} \left/ {k} \right.}}}^{*}}} \right)} \right]} \right\}, \hfill<!endaligned> $$
$$ {j_{21 }}={e^{-1 }}\left[ {\zeta \Phi -\left( {1-\zeta } \right)H} \right],{j_{22 }}=\left[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \right]\left[ {1-\zeta +\zeta \sigma \left( {1-\alpha } \right)\left( {1+{b \left/ {k} \right.}} \right)} \right], $$
$$ {j_{23 }}=-\zeta e\left[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \right]\left[ {1-\left( {1-{\alpha^{*}}} \right){\sigma^{*}}\left( {1+{{{{b^{*}}}} \left/ {{{k^{*}}}} \right.}} \right)} \right], $$
$$ {j_{31 }} ={{{\left[ {\zeta {H^{*}}-\left( {1-\zeta } \right){\Phi^{*}}} \right]}} \left/ {e} \right.},{j_{32 }} =-\left[ {{{{\left( {1-\zeta } \right)}} \left/ {e} \right.}} \right]\left[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \right]\left[ {1-\left( {1-\alpha } \right)\sigma \left( {1+{b \left/ {k} \right.}} \right)} \right], $$
$$ {j_{33 }}=\left[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \right]\left[ {\zeta +\left( {1-\zeta } \right)\left( {1-{\alpha^{*}}} \right){\sigma^{*}}\left( {1+{{{{b^{*}}}} \left/ {{{k^{*}}}} \right.}} \right)} \right],\ \mathrm{ whereby} $$
$$ H\equiv \left( {{M \left/ {{{G^A}}} \right.}} \right){k^{\alpha }}-k=\left[ {{{{\left( {1+i} \right)}} \left/ {{\left( {{G^A}\alpha } \right)}} \right.}-1} \right]k\;\mathrm{ and} $$
$$ \Phi \equiv k+b\left\{ {\sigma \left[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}-1}} \right.}} \right]+1} \right\}-{\sigma_0}{k^{\alpha }}. $$

The elements of the Jacobian matrix (15.15) can be analogously obtained as in the appendix of Chap. 14.

1.3 Proof of Proposition 15.2

To prove the saddle-path stability of the steady state with larger capital intensities we need the eigenvalues of the Jacobian in the neighborhood of the steady-state solution. The calculation of the eigenvalues commences with the calculation of the determinant of the Jacobian (15.15). To calculate this determinant, denoted detJ, multiply the second row of Eq. 15.15 by \( e{{{(1-\alpha )}} \left/ {k} \right.} \) and the third row by \( -e{{{(1-{\alpha^{*}})}} \left/ {{{k^{*}}}} \right.} \) and add the results to the first row, and you will obtain:

$$ J=\left( {\begin{array}{*{20}{c}} 1 & 0 & 0 \\ {\frac{{\zeta \boldsymbol{\Phi} -\left( {1-\zeta } \right)H}}{e}} & {\frac{{q\left[ {1-\zeta +\zeta \sigma \left( {1-\alpha } \right)\left( {1+\frac{b}{k}} \right)} \right]}}{{{G^A}}}} & {\frac{{-\zeta qe\left[ {1-{\sigma^{*}}\left( {1-{\alpha^{*}}} \right)\left( {1+\frac{{{b^{*}}}}{{{k^{*}}}}} \right)} \right]}}{{{G^A}}}} \\ {\frac{{\zeta {H^{*}}-\left( {1-\zeta } \right){\boldsymbol{\Phi}^{*}}}}{e}} & {\frac{{\left( {\zeta -1} \right)q\,\left[ {1-\sigma \left( {1-\alpha } \right)\left( {1+\frac{b}{k}} \right)} \right]}}{{e{G^A}}}} & {\frac{{q\left[ {\zeta +\left( {1-\zeta } \right){\sigma^{*}}\left( {1-{\alpha^{*}}} \right)\left( {1+\frac{{{b^{*}}}}{{{k^{*}}}}} \right)} \right]}}{{{G^A}}}} \\ \end{array}} \right). $$

By applying the method of cross-diagonal multiplication we obtain det J= \( {(1+i)^2}[\zeta (1-\alpha )\sigma ()+(1-\zeta )(1-{\alpha^{*}}){\sigma^{*}}(1+{b^{*}}/{k^{*}})]/{{({G^A})}^2} \) , acknowledging that \( q=1+i \) .

In order to calculate the eigenvalues of \( J(e,k,{k^{*}}) \), we first consider the case of \( b={b^{*}}=0 \). Since \( J(e,k,{k^{*}}) \) is a square matrix, we use the theorem which asserts that the product of the eigenvalues equals its determinant and the sum of its eigenvalues is equal to its trace (see for example Azariadis 1993, 124). Denoting the eigenvalues of \( J(e,k,{k^{*}}) \) by \( {\lambda_i},i=1,2,3 \) and the trace by \( \mathrm{ tr}J \), the theorem reads as follows:

$$ {\lambda_1}{\lambda_2}{\lambda_3}=\det J, $$
(15.16)
$$ {\lambda_1}+{\lambda_2}+{\lambda_3}=\mathrm{ tr}J. $$
(15.17)

Next, from extensive numerical calculations for all admissible parameter values we guess that \( {\lambda_2}=\alpha \) and \( {\lambda_3}={\alpha^{*}} \). Inserting these guess values into Eq. 15.16 and solving for \( {\lambda_1} \), we obtain:

$$ {\lambda_1}=\left\{ {{{{{{{\left( {1+i} \right)}}^2}}} \left/ {{\left[ {{{{\left( {{G^A}} \right)}}^2}\alpha{\alpha^{*}}} \right]}} \right.}} \right\}\left[ {\zeta \left( {1-\alpha } \right)\sigma +\left( {1-\zeta } \right)\left( {1-{\alpha^{*}}} \right){\sigma^{*}}} \right]. $$
(15.18)

To verify these guess solutions for the eigenvalues we show that by setting \( {\lambda_1}=\mathrm{ tr}J-\alpha -{\alpha^{*}} \) (using Eq. 15.17) equal to \( {\lambda_1} \) in Eq. 15.18 we obtain an identity. Acknowledging the Jacobian (15.15) under \( b={b^{*}}=0 \), it is immediate that \( \mathrm{tr}J=1+(1-\alpha ){{{[(1-\zeta )H-\zeta \varPhi ]}} \left/ {k} \right.}+(1-{\alpha^{*}}){{{[\zeta {H^{*}}-(1-\zeta ){\varPhi^{*}}]}} \left/ {{{k^{*}}}} \right.}+[{(1+i) \left/ {{{G^A}}} \right.}]\times \) \( \times [1+\zeta \sigma \left( {1-\alpha } \right)+(1-\zeta ){\sigma^{*}}(1-{\alpha^{*}})] \). Using the determinant of \( J(e,k,{k^{*}}) \), the trace of \( J(e,k,{k^{*}}) \) can be equivalently written as follows:

$$ \mathrm{tr}J=1+(q/{G^A})+({G^A}/q)\det\,J+\varDelta, $$
(15.19)

whereby \( \Delta \equiv (1-\alpha )[(1-\zeta )H-\zeta \Phi ]/k + (1-{\alpha^{*}})[\zeta {H^{*}}-\left( {1-\zeta } \right){\Phi^{*}}]/{k^{*}}. \) To proceed note that for \( b={b^{*}}=0 \),\( {\Phi \left/ {{k=1-{{{(1-\alpha )\sigma (1+i)}} \left/ {{(\alpha {G^A})}} \right.}}} \right.} \)and \( {{{{\Phi^{*}}}} \left/ {{{k^{*}}=1-{{{(1-{\alpha^{*}}){\sigma^{*}}(1+i)}} \left/ {{({\alpha^{*}}{G^A})}} \right.}}} \right.} \). Moreover, \( {H \left/ {k= } \right.}{{{(1+i-\alpha {G^A})}} \left/ {{(\alpha {G^A})}} \right.} \) and \( {{{{H^{*}}}} \left/ {{{k^{*}}=}} \right.}{{{(1+i-{\alpha^{*}}{G^A})}} \left/ {{({\alpha^{*}}{G^A})}} \right.} \) hold true. Inserting these expressions into the definition of \( \Delta \) in Eq. 15.19 and the assumption that \( \zeta =1-\zeta \) without loss of generality lead to the following equivalent expression for \( \varDelta \):

$$ \varDelta =\zeta \{(1+i)\{(1-\alpha ){\alpha^{*}}[1+(1-\alpha )\sigma ]+(1-{\alpha^{*}})\alpha [1+(1-{\alpha^{*}}){\sigma^{*}}]\}- $$
$$ -2{G^A}\alpha {\alpha^{*}}(2-\alpha -{\alpha^{*}})\}/(\alpha{\alpha^{*}}{G^A}). $$
(15.20)

On the other hand, \( \mathrm{tr}\,J-\alpha -{\alpha^{*}}={\lambda_1}={{{\det\,J}} \left/ {{(\alpha\,{\alpha^{*}})}} \right.} \) can be equivalently written as follows:

$$ \alpha\,{\alpha^{*}}[1+{(1+i) \left/ {{{G^A}}} \right.}]+\alpha\,{\alpha^{*}}[{{{{G^A}}} \left/ {(1+i) } \right.}]\det\,J+\alpha\,{\alpha^{*}}\varDelta -\alpha\,{\alpha^{*}}(\alpha +{\alpha^{*}})=\det\,J. $$
(15.21)

Inserting Eq. 15.20 and \( \det\,J \) into the left-hand side of Eq. 15.21 we get the result after some simple but tedious calculations that the equality in Eq. 15.21 is equivalent to the following equality:

$$ [({{{(1+i)\zeta )}} \left/ {{{G^A}}} \right.}][\alpha (1+{\sigma^{*}})+{\alpha^{*}}(1+\sigma )-\alpha {\alpha^{*}}(\sigma +{\sigma^{*}})]-\alpha {\alpha^{*}}=\det J. $$
(15.22)

Setting Eq. 15.8 equal to 15.9 and acknowledging \( \zeta =1-\zeta \) we get:

$$ \frac{{\left( {1+i-{\alpha^{*}}{G^A}} \right)}}{{\left( {1+i-\alpha {G^A}} \right)}}=\frac{{\left[ {\left( {1-{\alpha^{*}}} \right){\sigma^{*}}(1+i)-{\alpha^{*}}{G^A}} \right]}}{{\left( {\alpha {G^A}-\left( {1-\alpha } \right)\sigma (1+i)} \right)}}. $$
(15.23)

Cross multiplication in Eq. 15.23 and collecting terms yield exactly the equality in Eq. 15.22. Since \( 0<\alpha <1 \) and \( 0<{\alpha^{*}}<1 \) by assumption, \( {\lambda_1}>1,{\lambda_2}<1,{\lambda_3}<1 \) as claimed.

Next, we consider the more general case of \( b>0,\;{b^{*}}=0. \) We guess that \( {\lambda_3}={\alpha^{*}.} \)Insertion into Eqs. 15.16 and 15.17 yields \( {\lambda_2}=({1 \left/ {2} \right.})(\mathrm{ tr}J-{\alpha^{*}}) \) \( -({1 \left/ {2} \right.}){{[{{(\mathrm{ tr}J-{\alpha^{*}})}^2}-4\det J/{\alpha^{*}}]}^{0.5 }} \), \( {\lambda_1}=({1 \left/ {2} \right.})(\mathrm{ tr}J-{\alpha^{*}})+({1 \left/ {2} \right.})[{{(\mathrm{ tr}J-{\alpha^{*}})}^2}- \) \( -4\det J/{\alpha^{*}}{]^{0.5 }} \). Since \( {\alpha^{*}}<1 \), \( {\alpha^{*}}{{(\mathrm{ tr}J-{\alpha^{*}})}^2}>4\det J \) and \( 1+{\alpha^{*}}-\mathrm{ tr}\ J+ \) \( +{{{\det J}} \left/ {{{\alpha^{*}}}} \right.}<0 \) Footnote 12 at \( ({e^H},{k^H},{k^{*,H }}) \), \( {\lambda_2}<1,{\lambda_1}>1 \). For the general case of \( b>0, \) \( {b^{*}}>0 \)Descartes Rule of Sign (Sydsaeter et al. 2010, 8) has to be applied on the polynomial: \( {\lambda^3}+(3-\mathrm{ tr}J){\lambda^2}+(3+\mathrm{ mi}J-2\mathrm{ tr}J)\lambda +1 \) \( -\mathrm{ tr}\,\,J+\mathrm{ mi}\ J-\det J=0, \)where \( \mathrm{mi}\,J={(1+i) \left/ {{{G^A}+(1+{{{{G^A}}} \left/ {{(1+i))\det J}} \right.}}} \right.}+({(1+i) \left/ {{{G^A}}} \right.})\{(1-\alpha )(1-{\alpha^{*}})\times \) \( (1-\zeta )\sigma [{(H \left/ {k} \right.})(1+{b \left/ {{k)+{{{({H^{*}}}} \left/ {{{k^{*}}}} \right.})(1+{{{{b^{*}}}} \left/ {{{k^{*}})}} \right.}}} \right.}]-[(1-\alpha )\zeta {{{(\Phi }} \left/ {k} \right.})+(1-{\alpha^{*}})(1-\zeta ) \) \({{{({\Phi^{*}}}} \left/ {{{k^{*}}}} \right.})]\} \) denotes the principal minor of \( J(e,k,{k^{*}}) \) . Since \( ({e^H},{k^H},{k^{*,H }}) \) \( 3-\mathrm{ tr}J<0, \) \( 3+\mathrm{ mi}J-2<0, \) \( 1-\mathrm{ tr}J+\mathrm{ mi}J-\det J<0 \),Footnote 13 \( {\lambda_1}>1,{\lambda_2}<1,{\lambda_3}<1 \) follow.

1.4 Comparative Steady-State Effects of Debt Changes

To derive the steady-state effects of a marginal change of public debt in Home, we differentiate Eqs. 15.7, 15.8 and 15.9 totally with respect to \( e,k,{k^{*}} \) and \( b \). After inserting the result of Eq. 15.7 into differentiated Eqs. 15.8 and 15.9 this yields:

$$ \left[ {\begin{array}{ccccccc}{{\Phi^{*}}} & {e\frac{{\left( {1-\alpha } \right){k^{*}}}}{{\left( {1-{\alpha^{*}}} \right)k}}\frac{{\partial {\Phi^{*}}}}{{\partial {k^{*}}}}+\frac{{\partial \Phi }}{{\partial k}}} \\ {\zeta {H^{*}}} & {\,\frac{{e\zeta \left( {1-\alpha } \right){k^{*}}}}{{\left( {1-{\alpha^{*}}} \right)k}}\frac{{\partial {H^{*}}}}{{\partial {k^{*}}}}-\left( {1-\zeta } \right)\frac{{\partial H}}{{\partial k}}} \\ \end{array}} \right]\left[ {\begin{array}{ccccccc} {de} \\ {dk} \\ \end{array}} \right]=\left[ {\begin{array}{ccccccc} {\frac{{-\partial \Phi }}{{\partial b}}} \\ 0 \\ \end{array}} \right]db $$
(15.24)

Solving Eq. 15.24 by using Cramer’s rule for \( {de \left/ {db } \right.} \) and \( {dk \left/ {db } \right.} \), we obtain Eq. 15.10 in the main text.

1.5 Proof of Proposition 15.3

Noting the definition of the slopes of the AA- and CC-curve in the main text, it is not difficult to see that \( de/d{k_{|CC }}=[q(\alpha -{\alpha^{*}})-{G^A}\alpha {\alpha^{*}}(\alpha -{\alpha^{*}})]\) \( {{{[(1-\zeta )\left( {{{{\partial H}} \left/ {{\partial k}} \right.}} \right){k^{*}}]}} \left/ {{[\zeta {{{({H^{*}})}}^2}{G^A}(1-{\alpha^{*}})\alpha {\alpha^{*}}]}} \right.} \) Acknowledging that \( {G^A}=q\Leftrightarrow \) \( \partial H/\partial k=0 \), it follows that \( de/d{k_{|CC }}=0 \), while for \( {G^A}<q\Leftrightarrow \partial H/\partial k>0 \) and hence \( {de \left/ {{d{k_{|CC }}}} \right.}>rless 0\Leftrightarrow \alpha >rless {\alpha^{*}} \) and for \( {G^A}>q\Leftrightarrow \partial H/\partial k<0 \), \( {de \left/ {{d{k_{|CC }}}} \right.}\lessgtr 0\Leftrightarrow \) \( \alpha >rless {\alpha^{*}} \).

The slope of the AA-curve is given by:

$$ {{\frac{de }{dk}}_{{\left| {AA} \right.}}}=-{{({\Phi^{*}})}^{-1 }}\left\{ {\frac{{(1-\zeta )}}{\zeta}\frac{{{\alpha^{*}}}}{\alpha}\frac{{(1-\alpha )}}{{(1-{\alpha^{*}})}}\frac{{(q-\alpha {G^A})}}{{(q-{\alpha^{*}}{G^A})}}\left[ {1-(1-{\alpha^{*}}){\sigma^{*}}{(q \left/ {{{G^A}}} \right.})(1+{{{{b^{*}}}} \left/ {{{k^{*}}}} \right.})} \right]} \right. $$
$$ \left. {+\left[ {1-(1-\alpha )\sigma {(q \left/ {{{G^A}}} \right.})(1+{b \left/ {k} \right.})} \right]} \right\}. $$

Since by assumption \( (1-\alpha )\sigma q/{G^A}(1+{b \left/ {k) } \right.}<1 \) and \( (1-{\alpha^{*}}){\sigma^{*}}q/ \) \( {G^A}(1+{{{{b^{*}}}} \left/ {{{k^{*}})}} \right.}<1 \) hold, the term in curled brackets is certainly larger than zero. Thus, \( {de \left/ {{d{k_{{\left| {AA} \right.}}}}} \right.}>rless 0\Leftrightarrow {\Phi^{*}}\lessgtr 0\Leftrightarrow \Phi >rless 0 \).

\( |{de \left/ {{d{k_{|AA }}}} \right.}|>|{de \left/ {{d{k_{|CC }}}} \right.}| \) is true in cases (ii) and (iii), since \( {de \left/ {{d{k_{{\left| {AA} \right.}}}}} \right.}={{{\{e{{{[(1-\alpha ){k^{*}}]}} \left/ {{[(1-{\alpha^{*}})k]({{{\partial {\Phi^{*}}}} \left/ {{\partial {k^{*}}}} \right.}}} \right.})+{{{\partial \Phi }} \left/ {{\partial k\}}} \right.}}} \left/ {{(-{\Phi^{*}})}} \right.} > \) \( {{{\{(1-\zeta ){{{(\partial H}} \left/ {{\partial k)-e\zeta {{{(1-\alpha )}} \left/ {{(1-{\alpha^{*}}){{{({k^{*}}}} \left/ {k} \right.}){{{(\partial {H^{*}}}} \left/ {{\partial {k^{*}})}} \right.}}} \right.}\}}} \right.}}} \left/ {{(\zeta {H^{*}})}} \right.} = ({de \left/ {{d{k_{|CC }}}} \right.}) \).

1.6 Derivation of Domestic Welfare Effect of Debt Change

To start with, write the steady-state indirect utility function of the younger household as follows: \( V\equiv U({x^1}(w-\tau ),{y^1}(w-\tau, e),{x^2}(w-\tau, q),{y^2}(w-\tau, q,e)), \) \( q=1+i \). Total differentiation and acknowledging the FOCs for direct utility maximization (see the main text) yield: \( dV={{{\partial U}} \left/ {{\partial {x^1}\{[}} \right.}{{{\partial {x^1}}} \left/ {\partial } \right.}(w-\tau )+{{{\partial {y^1}}} \left/ {\partial } \right.}(w-\tau )+ \) \({{{{q^{-1 }}\partial {x^2}}} \left/ {\partial } \right.}(w-\tau )+{{{({e \left/ {q) } \right.}\partial {y^2}}} \left/ {\partial } \right.}(w-\tau )]d(w-\tau )+{q^{-1 }}[{{{\partial {x^2}}} \left/ {{\partial q}} \right.}+e{{{\partial {y^2}}} \left/ {{\partial q]dq}} \right.}\) \( +e[{{{\partial {y^1}}} \left/ {{\partial e}} \right.}+{q^{-1 }}{{{\partial {y^2}}} \left/ {{\partial e]de}} \right.} \). Noting the optimal consumption functions from appendix to chapter 14 we obtain:

$$ {{{\partial {x^1}}} \left/ {\partial } \right.}(w-\tau )=\zeta /(1+\beta ),\;{{{\partial {y^1}}} \left/ {\partial } \right.}(w-\tau )=(1-\zeta )/(1+\beta ){e^{-1 }}, $$
$$ {{{\partial {x^2}}} \left/ {\partial } \right.}(w-\tau )=[\beta \zeta /(1+\beta )]q,\;{{{\partial {y^2}}} \left/ {\partial } \right.}(w-\tau )={{{[\beta (1-\zeta )q]}} \left/ {{[(1+\beta )e}} \right.}], $$
$$ {{{\partial {x^2}}} \left/ {\partial } \right.}q=[\beta \zeta /(1+\beta )](w-\tau ),\;{{{\partial {y^2}}} \left/ {\partial } \right.}q=[\beta \zeta /(1+\beta )](w-\tau ){e^{-1 }}, $$
$$ {{{\partial {y^1}}} \left/ {\partial } \right.}e=-(1-\zeta )(w-\tau )/(1+\beta ){e^{-2 }},\;{{{\partial {y^2}}} \left/ {\partial } \right.}e=-{{{[\beta (1-\zeta )q(w-\tau )]}} \left/ {{[(1+\beta ){e^2}}} \right.}]. $$

Inserting these relations into the total indirect utility differential, you will obtain: \( dV={{{\partial U}} \left/ {{\partial {x^1}[d(w-\tau )}} \right.}+ \) \( (s/q)dq-(1-\zeta )(w-\tau ){e^{-1 }}de] \) with \( s=\sigma (w-\tau ) \). From Eqs. 13.3 and 13.10 follows: \( d(w-\tau )= \) \( [\partial {{{(w-\tau )}} \left/ {{\partial k]dk}} \right.}+(q-{G^A})db \). Inserting this result into the indirect utility differential yields the total differential of the indirect utility function in the main text.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farmer, K., Schelnast, M. (2013). Public Debt Reduction in Advanced Countries and Its Impacts on Emerging Countries. In: Growth and International Trade. Springer Texts in Business and Economics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33669-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33669-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33668-3

  • Online ISBN: 978-3-642-33669-0

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics