Skip to main content

Randomized Distributed Decision

  • Conference paper
Distributed Computing (DISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7611))

Included in the following conference series:

Abstract

The paper tackles the power of randomization in the context of locality by analyzing the ability to “boost” the success probability of deciding a distributed language. The main outcome of this analysis is that the distributed computing setting contrasts significantly with the sequential one as far as randomization is concerned. Indeed, we prove that in some cases, the ability to increase the success probability for deciding distributed languages is rather limited.

We focus on the notion of a (p,q)-decider for a language \(\mathcal{L}\), which is a distributed randomized algorithm that accepts instances in \(\mathcal{L}\) with probability at least p and rejects instances outside of \(\mathcal{L}\) with probability at least q. It is known that every hereditary language that can be decided in t rounds by a (p,q)-decider, where p 2 + q > 1, can be decided deterministically in O(t) rounds. One of our results gives evidence supporting the conjecture that the above statement holds for all distributed languages and not only for hereditary ones, by proving the conjecture for the restricted case of path topologies.

For the range below the aforementioned threshold, namely, p 2 + q ≤ 1, we study the class B k (t) (for k ∈ ℕ* ∪ { ∞ }) of all languages decidable in at most t rounds by a (p,q)-decider, where \(p^{1+\frac{1}{k}}+q>1\). Since every language is decidable (in zero rounds) by a (p,q)-decider satisfying p + q = 1, the hierarchy B k provides a spectrum of complexity classes between determinism (k = 1, under the above conjecture) and complete randomization (k = ∞). We prove that all these classes are separated, in a strong sense: for every integer k ≥ 1, there exists a language \(\mathcal{L}\) satisfying \(\mathcal{L}\in B_{k+1}(0)\) but \(\mathcal{L}\notin B_k(t)\) for any t = o(n). In addition, we show that B  ∞ (t) does not contain all languages, for any t = o(n). In other words, we obtain the hierarchy B 1(t) ⊂ B 2 (t) ⊂ ⋯ ⊂ B  ∞ (t) ⊂ All.

Finally, we show that if the inputs can be restricted in certain ways, then the ability to boost the success probability becomes almost null, and in particular, derandomization is not possible even beyond the threshold p 2 + q = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications to self stabilization. Theoretical Computer Science 186(1-2), 199–230 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amit, A., Linial, N., Matousek, J., Rozenman, E.: Random lifts of graphs. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 883–894 (2001)

    Google Scholar 

  4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-Stabilization By Local Checking and Correction. In: Proc. IEEE Symp. on the Foundations of Computer Science (FOCS), pp. 268–277 (1991)

    Google Scholar 

  5. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in delta) time. In: Proc. 41st ACM Symp. on Theory of computing (STOC), pp. 111–120 (2009)

    Google Scholar 

  6. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed Approximation. In: Proc. 43rd ACM Symp. on Theory of Computing, STOC (2011)

    Google Scholar 

  7. Dereniowski, D., Pelc, A.: Drawing maps with advice. Journal of Parallel and Distributed Computing 72, 132–143 (2012)

    Article  MATH  Google Scholar 

  8. Dijkstra, E.W.: Self-stabilization in spite of distributed control. Comm. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  9. Dolev, S., Gouda, M., Schneider, M.: Requirements for silent stabilization. Acta Informatica 36(6), 447–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed Computing with Advice: Information Sensitivity of Graph Coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Fraigniaud, P.: D Ilcinkas, and A. Pelc. Communication algorithms with advice. J. Comput. Syst. Sci. 76(3-4), 222–232 (2008)

    Article  MathSciNet  Google Scholar 

  12. Fraigniaud, P.: A Korman, and E. Lebhar. Local MST computation with short advice. In: Proc. 19th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 154–160 (2007)

    Google Scholar 

  13. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: Proc. 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 708–717 (2011)

    Google Scholar 

  14. Fraigniaud, P., Pelc, A.: Decidability Classes for Mobile Agents Computing. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-Free Computing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 333–347. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Fraigniaud, P., Rajsbaum, S., Travers, C.: Universal Distributed Checkers and Orientation-Detection Tasks (submitted, 2012)

    Google Scholar 

  17. Göös, M., Suomela, J.: Locally checkable proofs. In: Proc. 30th ACM Symp. on Principles of Distributed Computing, PODC (2011)

    Google Scholar 

  18. Kor, L., Korman, A., Peleg, D.: Tight Bounds For Distributed MST Verification. In: Proc. 28th Int. Symp. on Theoretical Aspects of Computer Science, STACS (2011)

    Google Scholar 

  19. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Distributed Computing 20, 253–266 (2007)

    Article  Google Scholar 

  20. Korman, A., Kutten, S., Masuzawa, T.: Fast and Compact Self-Stabilizing Verification, Computation, and Fault Detection of an MST. In: Proc. 30th ACM Symp. on Principles of Distributed Computing, PODC (2011)

    Google Scholar 

  21. Korman, A., Kutten, S.: D Peleg. Proof labeling schemes. Distributed Computing 22, 215–233 (2010)

    Article  Google Scholar 

  22. Korman, A., Sereni, J.S., Viennot, L.: Toward More Localized Local Algorithms: Removing Assumptions Concerning Global Knowledge. In: Proc. 30th ACM Symp. on Principles of Distributed Computing (PODC), pp. 49–58 (2011)

    Google Scholar 

  23. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Proc. 21st ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 138–144 (2009)

    Google Scholar 

  24. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15, 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Naor, M.: A Lower Bound on Probabilistic Algorithms for Distributive Ring Coloring. SIAM J. Discrete Math. 4(3), 409–412 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Panconesi, A., Srinivasan, A.: On the Complexity of Distributed Network Decomposition. J. Algorithms 20(2), 356–374 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)

    Google Scholar 

  29. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry breaking. In: Proc. 29th ACM Symp. on Principles of Distributed Computing (PODC), pp. 257–266 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraigniaud, P., Korman, A., Parter, M., Peleg, D. (2012). Randomized Distributed Decision. In: Aguilera, M.K. (eds) Distributed Computing. DISC 2012. Lecture Notes in Computer Science, vol 7611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33651-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33651-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33650-8

  • Online ISBN: 978-3-642-33651-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics