Skip to main content

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover

  • Conference paper
Distributed Computing (DISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7611))

Included in the following conference series:

Abstract

König’s theorem states that on bipartite graphs the size of a maximum matching equals the size of a minimum vertex cover. It is known from prior work that for every ε > 0 there exists a constant-time distributed algorithm that finds a (1 + ε)-approximation of a maximum matching on 2-coloured graphs of bounded degree. In this work, we show—somewhat surprisingly—that no sublogarithmic-time approximation scheme exists for the dual problem: there is a constant δ > 0 so that no randomised distributed algorithm with running time o(logn) can find a (1 + δ)-approximation of a minimum vertex cover on 2-coloured graphs of maximum degree 3. In fact, a simple application of the Linial–Saks (1993) decomposition demonstrates that this lower bound is tight.

Our lower-bound construction is simple and, to some extent, independent of previous techniques. Along the way we prove that a certain cut minimisation problem, which might be of independent interest, is hard to approximate locally on expander graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åstrand, M., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: Local algorithms in (weakly) coloured graphs (2010) (manuscript, arXiv:1002.0125 (cs.DC))

    Google Scholar 

  2. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast Distributed Approximations in Planar Graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Diestel, R.: Graph Theory, 3rd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. In: Proc. 31st Symposium on Principles of Distributed Computing (PODC 2012), pp. 175–184. ACM Press, New York (2012)

    Chapter  Google Scholar 

  5. Janson, S.: Large deviations for sums of partly dependent random variables. Random Structures & Algorithms 24(3), 234–248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. 23rd Symposium on Principles of Distributed Computing (PODC 2004), pp. 300–309. ACM Press, New York (2004)

    Google Scholar 

  7. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proc. 17th Symposium on Discrete Algorithms (SODA 2006), pp. 980–989. ACM Press, New York (2006)

    Chapter  Google Scholar 

  8. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: Lower and upper bounds (2010) (manuscript, arXiv:1011.5470 (cs.DC))

    Google Scholar 

  9. Lenzen, C., Wattenhofer, R.: Leveraging Linial’s Locality Limit. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 394–407. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Linial, N., Saks, M.: Low diameter graph decompositions. Combinatorica 13, 441–454 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Morgenstern, M.: Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q. Journal of Combinatorial Theory, Series B 62(1), 44–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: Proc. 49th Symposium on Foundations of Computer Science (FOCS 2008), pp. 327–336. IEEE Computer Society Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  15. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Publications, Inc., Mineola (1998)

    MATH  Google Scholar 

  16. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theoretical Computer Science 381(1-3), 183–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  18. Suomela, J.: Survey of local algorithms. ACM Computing Surveys (to appear), http://www.cs.helsinki.fi/local-survey/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Göös, M., Suomela, J. (2012). No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover. In: Aguilera, M.K. (eds) Distributed Computing. DISC 2012. Lecture Notes in Computer Science, vol 7611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33651-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33651-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33650-8

  • Online ISBN: 978-3-642-33651-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics