Skip to main content

Multi-objective Optimisation, Sensitivity and Robustness Analysis in FBA Modelling

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7605))

Abstract

In this work, we propose a computational framework to design in silico robust bacteria able to overproduce multiple metabolites. To this end, we search the optimal genetic manipulations, in terms of knockout, which also guarantee the growth of the organism. We introduce a multi-objective optimisation algorithm, called Genetic Design through Multi-Objective (GDMO), and test it in several organisms to maximise the production of key intermediate metabolites such as succinate and acetate. We obtain a vast set of Pareto optimal solutions; each of them represents an organism strain. For each solution, we evaluate the fragility by calculating three robustness indexes and by exploring reactions and metabolite interactions. Finally, we perform the Sensitivity Analysis of the metabolic model, which finds the inputs with the highest influence on the outputs of the model. We show that our methodology provides effective vision of the achievable synthetic strain landscape and a powerful design pipeline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alper, H., Miyaoku, K., Stephanopoulos, G.: Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology 23(5), 612–616 (2005)

    Article  Google Scholar 

  2. Jarboe, L.R., Zhang, X., Wang, X., Moore, J.C., Shanmugam, K.T., Ingram, L.O.: Metabolic engineering for production of biorenewable fuels and chemicals: Contributions of synthetic biology. Journal of Biomedicine and Biotechnology (2010)

    Google Scholar 

  3. Atsumi, S., Wu, T.Y., Eckl, E.M., Hawkins, S.D., Buelter, T., Liao, J.C.: Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes.. Applied Microbiology and Biotechnology 85(3), 651–657 (2010)

    Article  Google Scholar 

  4. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nature Biotechnology 28(3), 245–248 (2010)

    Article  Google Scholar 

  5. Patil, K.R., Rocha, I., Förster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6(1), 308 (2005)

    Article  Google Scholar 

  6. Rocha, M., Maia, P., Mendes, R., Pinto, J.P., Ferreira, E.C., Nielsen, J., Patil, K.R., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9(1), 499 (2008)

    Article  Google Scholar 

  7. Lun, S.D., Rockwell, G., Guido, N.J., Baym, M., Kelner, J.A., Berger, B., Galagan, J.E., Church, G.M.: Large-scale identification of genetic design strategies using local search. Mol. Syst. Biol. 5(296) (2009)

    Google Scholar 

  8. Burgard, A.P., Pharkya, P., Maranas, C.D.: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering 84(6), 647–657 (2003)

    Article  Google Scholar 

  9. Pharkya, P., Maranas, C.: An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metabolic Engineering 8(1), 1–13 (2006)

    Article  Google Scholar 

  10. Sun, J., Sayyar, B., Butler, J.E., Pharkya, P., Fahland, T.R., Famili, I., Schilling, C.H., Lovley, D.R., Mahadevan, R.: Genome-scale constraint-based modeling of Geobacter metallireducens. BMC Systems Biology 3(1), 15+ (2009)

    Google Scholar 

  11. Feist, A.M., Scholten, J.C.M., Palsson, B.Ø., Brockman, F.J., Ideker, T.: Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2 (January 2006)

    Google Scholar 

  12. Charusanti, P., Chauhan, S., McAteer, K., Lerman, J.A., Hyduke, D.R., Motin, V.L., Ansong, C., Adkins, J.N., Palsoon, B.Ø.: An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis co92

    Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  14. Sendin, J.O., Alonso, A., Banga, J.: Multi-objective optimization of biological networks for prediction of intracellular fluxes. In: Corchado, J., De Paz, J., Rocha, M., Rocha, M., Fernández Riverola, F. (eds.) 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB 2008). AISC, vol. 49, pp. 197–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., Sauer, U.: Multidimensional optimality of microbial metabolism. Science 336(6081), 601–604 (2012)

    Article  Google Scholar 

  16. Xu, M., Bhat, S., Smith, R., Stephens, G., Sadhukhan, J.: Multi-objective optimisation of metabolic productivity and thermodynamic performance. Computers & Chemical Engineering 33(9), 1438–1450 (2009)

    Article  Google Scholar 

  17. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)

    Article  Google Scholar 

  18. Stracquadanio, G., Umeton, R., Papini, A., Liò, P., Nicosia, G.: Analysis and optimization of c3 photosynthetic carbon metabolism. In: Rigoutsos, I., Floudas, C.A. (eds.) Proceedings of 10th IEEE International Conference on Bioinformatics and Bioengineering (IEEE BIBE), Philadelphia, PA, USA, May 31-June 3, pp. 44–51. IEEE Computer Society (2010)

    Google Scholar 

  19. Umeton, R., Stracquadanio, G., Papini, A., Costanza, J., Lio, P., Nicosia, G.: Identification of sensitive enzymes in the photosynthetic carbon metabolism. Advances in Experimental Medicine and Biology 736, 441–459 (2012)

    Article  Google Scholar 

  20. Zhang, H.X., Goutsias, J.: A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems. BMC Bioinformatics 11(246) (2010)

    Google Scholar 

  21. Rodriguez-Fernandez, M., Banga, J.R.: Senssb: a software toolbox for the development and sensitivity analysis of systems biology models. Bioinformatics 26(13), 1675–1676 (2010)

    Article  Google Scholar 

  22. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–175 (1991)

    Article  Google Scholar 

  23. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Physical Review Letters 85, 5468–5471 (2000)

    Article  Google Scholar 

  24. Shinar, G., Alon, U., Feinberg, M.: Sensitivity and robustness in chemical reaction networks. SIAM Journal of Applied Mathematics 69(4), 977–998 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hafner, M., Koeppl, H., Hasler, M., Wagner, A.: Glocal robustness analysis and model discrimination for circadian oscillators. PLoS Comput. Biol. 5(10) (2009)

    Google Scholar 

  26. Donaldson, R., Gilbert, D.: A Model Checking Approach to the Parameter Estimation of Biochemical Pathways. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 269–287. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Lodhi, H., Gilbert, D.: Bootstrapping Parameter Estimation in Dynamic Systems. In: Elomaa, T., Hollmén, J., Mannila, H. (eds.) DS 2011. LNCS, vol. 6926, pp. 194–208. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Umeton, R., Stracquadanio, G., Sorathiya, A., Papini, A., Lio, P., Nicosia, G.: Design of robust metabolic pathways. In: Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pp. 747–752 (June 2011)

    Google Scholar 

  29. Nicosia, G., Rinaudo, S., Sciacca, E.: An evolutionary algorithm-based approach to robust analog circuit design using constrained multi-objective optimization. Knowledge-Based Systems 21(3), 175 (2008), The 27th SGAI International Conference on Artificial Intelligence

    Article  Google Scholar 

  30. Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D., Broadbelt, L.J., Hatzimanikatis, V., Palsson, B.Ø.: A genome-scale metabolic reconstruction for escherichia coli k-12 mg1655 that accounts for 1260 orfs and thermodynamic information. Mol. Syst. Biol. 3(121), 291–301 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costanza, J., Carapezza, G., Angione, C., Liò, P., Nicosia, G. (2012). Multi-objective Optimisation, Sensitivity and Robustness Analysis in FBA Modelling. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33636-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33635-5

  • Online ISBN: 978-3-642-33636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics