Skip to main content

Abstraction of Graph-Based Models of Bio-molecular Reaction Systems for Efficient Simulation

  • Conference paper
Computational Methods in Systems Biology (CMSB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7605))

Included in the following conference series:

Abstract

We propose a technique to simulate molecular reaction systems efficiently by abstracting graph models. Graphs (or networks) and their transitions give rise to simple but powerful models for molecules and their chemical reactions. Depending on the purpose of a graph-based model, nodes and edges of a graph may correspond to molecular units and chemical bonds, respectively. This kind of model provides naive simulations of molecular reaction systems by applying chemical kinetics to graph transition. Such naive models, however, can immediately cause a combinatorial explosion of the number of molecular species because combination of chemical bonds is usually unbounded, which makes simulation intractable. To overcome this problem, we introduce an abstraction technique to divide a graph into local structures. New abstracted models for simulating DNA hybridization systems and RNA interference are explained as case studies to show the effectiveness of our abstraction technique. We then discuss the trade-off between the efficiency and exactness of our abstracted models from the aspect of the number of structures and simulation error. We classify molecular reaction systems into three groups according to the assumptions on reactions. The first one allows efficient and exact abstraction, the second one allows efficient but approximate abstraction, and the third one does not reduce the number of structures by abstraction. We conclude that abstraction is a useful tool to analyze complex molecular reaction systems and measure their complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bath, J., Turberfield, A.J.: DNA nanomachines. Nat. Nanotechnol. 2(5), 275–284 (2007)

    Article  Google Scholar 

  2. Baulcombe, D.C.: Amplified Silencing. Science 315(5809), 199–200 (2007)

    Article  Google Scholar 

  3. Bergstrom, C.T., McKittrick, E., Antia, R.: Mathematical models of RNA silencing: unidirectional amplification limits accidental self-directed reactions. Proc. Natl. Acad. Sci. USA 100(20), 11511–11516 (2003)

    Article  Google Scholar 

  4. Borisov, N.M., Chistopolsky, A.S., Faeder, J.R., Kholodenko, B.N.: Domain-oriented reduction of rule-based network models. IET Syst. Biol. 2(5), 342–351 (2008)

    Article  Google Scholar 

  5. Brodersen, P., Voinnet, O.: The diversity of RNA silencing pathways in plants. TRENDS in Genettics 22(5), 268–280 (2006)

    Article  Google Scholar 

  6. Conzelmann, H., Fey, D., Gilles, E.D.: Exact model reduction of combinatorial reaction networks. BMC Syst. Biol. 2, 78 (2008)

    Article  Google Scholar 

  7. Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B.N., Gilles, E.D.: A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7, 34 (2006)

    Article  Google Scholar 

  8. Cuccato, G., Polynikis, A., Siciliano, V., Graziano, M., di Bernardo, M., di Bernardo, D.: Modeling RNA interference in mammalian cells. BMC Syst. Biol. 5, 19 (2011)

    Article  Google Scholar 

  9. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: Proceedings of the Twenty-Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 362–381. IEEE (2010)

    Google Scholar 

  10. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract Interpretation of Cellular Signalling Networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 101(43), 15275–15278 (2004)

    Article  Google Scholar 

  12. Fehlberg, E.: Klassische Runge-Kutta-Formeln vierter und niedrigerer ordnung mit schrittweiten-kontrolle und ihre Anwendung auf wärmeleitungsprobleme. Computing 6(1), 61–71 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Natl. Acad. Sci. USA 106(16), 6453–6458 (2009)

    Article  Google Scholar 

  14. Groenenboom, M.A.C., Marée, A.F.M., Hogeweg, P.: The RNA Silencing Pathway: The Bits and Pieces That Matter. PLoS Comput. Biol. 1(2), 155–165 (2005)

    Article  Google Scholar 

  15. Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., Yan, H.: DNA Origami with Complex Curvatures in Three-Dimensional Space. Science 332(6027), 342–346 (2011)

    Article  Google Scholar 

  16. Harmer, R., Danos, V., Feret, J., Krivine, J., Fontana, W.: Intrinsic Information Carriers in Combinatorial Dynamical Systems. Chaos 20(3), 037108 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kawamata, I.: Formal Definition of the ODE of RNAi and Experimental Results for Approximate Abstraction: supplementary documents (2012), http://hagi.is.s.u-tokyo.ac.jp/~ibuki/cmsb2012supply.pdf

  18. Kawamata, I., Tanaka, F., Hagiya, M.: Automatic Design of DNA Logic Gates Based on Kinetic Simulation. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 88–96. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Kawamata, I., Tanaka, F., Hagiya, M.: Abstraction of DNA Graph Structures for Efficient Enumeration and Simulation. In: International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 800–806 (2011)

    Google Scholar 

  20. Kitano, H.: Systems Biology: A Brief Overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  21. Kobayashi, S.: A New Approach to Computing Equilibrium State of Combinatorial Hybridization Reaction Systems. In: Proc. of Workshop on Computing and Communications from Biological Systems: Theory and Applications, pp. 330–335 (2007)

    Google Scholar 

  22. Kobayashi, S.: Symmetric Enumeration Method: A New Approach to Computing Equilibria. Technical Report of Dept. of Computer Science, University of Electro-Communications (2008)

    Google Scholar 

  23. Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and analysis of DNA strand displacement devices using probabilistic model checking. J. R. Soc. Interface 9(72), 1470–1485 (2012)

    Article  Google Scholar 

  24. Marshall, W.F.: Modeling recursive RNA interference. PLoS Comput. Biol. 4(9), e1000183 (2008)

    Google Scholar 

  25. Pak, J., Fire, A.: Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans. Science 315(5809), 241–244 (2007)

    Article  Google Scholar 

  26. Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)

    Article  Google Scholar 

  27. Qian, L., Winfree, E.: Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  28. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-Free Nucleic Acid Logic Circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  29. Venkataraman, S., Dirks, R.M., Ueda, C.T., Pierce, N.A.: Selective cell death mediated by small conditional RNAs. Proc. Natl. Acad. Sci. USA 107(39), 16777–16782 (2010)

    Article  Google Scholar 

  30. Win, M.N., Smolke, C.D.: Higher-Order Cellular Information Processing with Synthetic RNA Devices. Science 322(5900), 456–460 (2008)

    Article  Google Scholar 

  31. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology (1998)

    Google Scholar 

  32. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318–322 (2008)

    Article  Google Scholar 

  33. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawamata, I., Aubert, N., Hamano, M., Hagiya, M. (2012). Abstraction of Graph-Based Models of Bio-molecular Reaction Systems for Efficient Simulation. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33636-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33635-5

  • Online ISBN: 978-3-642-33636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics