Skip to main content

Interacting Fermions in Optical Lattice Potentials

  • Chapter
  • First Online:
From Atom Optics to Quantum Simulation

Part of the book series: Springer Theses ((Springer Theses))

  • 1531 Accesses

Abstract

In this chapter I report on the experimental realization of the Fermi-Hubbard model. To this end, a repulsively interacting balanced spin mixture of ultracold \(^{40}\)K atoms is loaded into a three-dimensional optical lattice potential. The emerging quantum phases are probed by measuring the global compressibility of the quantum gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In typical ultracold atom experiments it is notoriously difficult to vary the atom number from shot to shot in a controlled way. However, our setup offers exceptional control of the harmonic confinement. Therefore we actively vary the harmonic trapping potential, while the atom number is kept constant. The remaining shot-to-shot fluctuations of the atom number are largely suppressed in the experimental data, because all quantities are expressed in rescaled, atom number independent units, such as \(E_{\mathrm {t}} \) and \(R_\mathrm{{sc}}\) (see below).

  2. 2.

    However, the entropies are not low enough to reach magnetic ordering of the spins, which is discussed later in this chapter (see also Sect. 3.3.2).

  3. 3.

    Actually, it seems desirable to perform a preramp to a lattice depth above \(2.2\) \(E_\mathrm{rec }\) in order to ensure a real band gap. However, this would require a very slow compression beyond the time scale that is affordable due to technical heating. In this respect the preramp to \(1\) \(E_\mathrm{rec }\) is a already compromise.

  4. 4.

    For a Gaussian distribution this definition of the cloud radius yields the standard deviation.

  5. 5.

    At half-filling, the maximal entropy is accommodated in the case of vanishing interactions. In a system of \(N\) lattice sites and \(N/2\) atoms per spin state, each configuration \(j\) has the same probability \(p_j=\left[ \frac{N!}{(N/2)! (N/2)!}\right]^{-2}\). With \(S = - k_B \sum \nolimits _j p_j \ln (p_j)\) and Stirling’s formula \(\ln (N!) \approx N \ln (N)\) the entropy per particle \(S/N=k_B \ln (4) \) is readily obtained. For strong repulsion each lattice site is occupied by exactly one atom. Here, all configurations have equal probability \(p_j^\infty =\left[\frac{N!}{(N/2)! (N/2)!}\right]^{-1}\) leading to \(S/N=k_B \ln (2)\). In the case of long-range antiferromagnetic order, there are only two configurations for the global quantum state. In the limit of large \(N\) this results in vanishing entropy per particle \(S/N\gtrsim 0\).

  6. 6.

    Localized wavefunctions have a stronger curvature, which corresponds to higher momentum contributions and, consequently, higher kinetic energy.

  7. 7.

    In the limit of strong compression, this corresponds to the maximally packed state of an ideal band insulator.

  8. 8.

    To my knowledge, the first qualitative arguments pointing to these possibilities have been made by Nikolay Prokof’ev during a DARPA OLE team meeting in the summer of 2008 in Cambridge, MA.

References

  1. U. Schneider, Interacting Fermionic Atoms in Optical Lattices—A Quantum Simulator for Condensed Matter Physics. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, (2010)

    Google Scholar 

  2. J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  3. S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, N. Prokof’ev, B. Svistunov, M. Troyer, Suppression of the critical temperature for superfluidity near the Mott transition. Nat. Phys. 6, 998 (2010)

    Article  Google Scholar 

  4. U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T.A. Costi, R.W. Helmes, D. Rasch, A. Rosch, Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520 (2008)

    Google Scholar 

  5. R.W. Helmes, T.A. Costi, A. Rosch, Mott transition of fermionic atoms in a three-dimensional optical trap. Phys. Rev. Lett. 100, 056403 (2008)

    Article  ADS  Google Scholar 

  6. V. Vuletić, C. Chin, A.J. Kerman, S. Chu, Suppression of atomic radiative collisions by tuning the ground state scattering length. Phys. Rev. Lett. 83, 943 (1999)

    Article  ADS  Google Scholar 

  7. H. Pichler, A.J. Daley, P. Zoller, Nonequilibrium dynamics of bosonic atoms in optical lattices: decoherence of many-body states due to spontaneous emission. Phys. Rev. A 82, 063605 (2010)

    Article  ADS  Google Scholar 

  8. N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, E. Demler, Observation of elastic doublon decay in the fermi-Hubbard model. Phys. Rev. Lett. 104, 080401 (2010)

    Article  ADS  Google Scholar 

  9. U. Schneider, L. Hackermüller, J.P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, A. Rosch, Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms. Nat. Phys. 8, 213 (2012)

    Article  Google Scholar 

  10. W. Ketterle, D. Durfee, D.M. Stamper-Kurn, Making, probing and understanding Bose-Einstein condensates, in Bose-Einstein Condensation in Atomic Gases, ed. by S. Stringari, M. Inguscio, C.E. Wieman (IOS Press, Amsterdam, 1999), pp. 67–176

    Google Scholar 

  11. G. Reinaudi, T. Lahaye, Z. Wang, D. Guéry-Odelin, Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt. Lett. 32, 3143 (2007)

    Article  ADS  Google Scholar 

  12. C. Regal, Experimental Realization of BCS-BEC Crossover Physics with a Fermi Gas of Atoms. Ph.D. Thesis, University of Colorado, (2005)

    Google Scholar 

  13. A. Kastberg, W.D. Phillips, S.L. Rolston, R.J.C. Spreeuw, P.S. Jessen, Adiabatic cooling of cesium to 700 nK in an optical lattice. Phys. Rev. Lett. 74, 1542 (1995)

    Article  ADS  Google Scholar 

  14. M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, T. Esslinger, Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001)

    Article  ADS  Google Scholar 

  15. M. Greiner, Ultracold Quantum Gases in Three-Dimensional Optical Lattice Potentials. Ph.D. Thesis, LMU München, (2003)

    Google Scholar 

  16. M. Köhl, H. Moritz, T. Stöferle, K. Günter, T. Esslinger, Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett. 94, 080403 (2005)

    Article  Google Scholar 

  17. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Kotliar, D. Vollhardt, Strongly correlated materials: insights from dynamical mean-field theory. Phys. Today 57, 53 (2004)

    Article  Google Scholar 

  19. L. De Leo, C. Kollath, A. Georges, M. Ferrero, O. Parcollet, Trapping and cooling fermionic atoms into Mott and Néel states. Phys. Rev. Lett. 101, 210403 (2008)

    Article  Google Scholar 

  20. R. Bulla, T.A. Costi, D. Vollhardt, Finite-temperature numerical renormalization group study of the Mott transition. Phys. Rev. B 64, 045103 (2001)

    Article  ADS  Google Scholar 

  21. R. Bulla, T.A. Costi, T. Pruschke, Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  22. R.W. Helmes, Dynamical Mean Field Theory of Inhomogeneous Correlated Systems. Ph.D. Thesis, University of Cologne, (2008)

    Google Scholar 

  23. R.W. Helmes, T.A. Costi, A. Rosch, Kondo proximity effect: how does a metal penetrate into a Mott insulator? Phys. Rev. Lett. 101, 066802 (2008)

    Article  ADS  Google Scholar 

  24. R. Jördens, N. Strohmaier, K. Günter, H. Moritz, T. Esslinger, A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204 (2008)

    Article  ADS  Google Scholar 

  25. C.A. Regal, C. Ticknor, J.L. Bohn, D.S. Jin, Creation of ultracold molecules from a Fermi gas of atoms. Nature 424, 47 (2003)

    Article  ADS  Google Scholar 

  26. L. Hackermüller, U. Schneider, M. Moreno-Cardoner, T. Kitagawa, T. Best, S. Will, E. Demler, E. Altman, I. Bloch, B. Paredes, Anomalous expansion of attractively interacting fermionic atoms in an optical lattice. Science 327, 1621 (2010)

    Article  ADS  Google Scholar 

  27. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994)

    Book  Google Scholar 

  28. M. Randeria, N. Trivedi, A. Moreo, R.T. Scalettar, Pairing and spin gap in the normal state of short coherence length superconductors. Phys. Rev. Lett. 69, 2001 (1992)

    Article  ADS  Google Scholar 

  29. A. Toschi, P. Barone, M. Capone, C. Castellani, Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model. New J. Phys. 7, 7 (2005)

    Article  ADS  Google Scholar 

  30. C.-C. Chien, Q. Chen, K. Levin, Fermions with attractive interactions on optical lattices and implications for correlated systems. Phys. Rev. A 78, 043612 (2008)

    Article  ADS  Google Scholar 

  31. T. Paiva, R. Scalettar, M. Randeria, N. Trivedi, Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity. Phys. Rev. Lett. 104, 066406 (2010)

    Article  ADS  Google Scholar 

  32. R.C. Richardson, The Pomeranchuk effect. Rev. Mod. Phys. 69, 683 (1997)

    Article  ADS  Google Scholar 

  33. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. N.R. Cooper, A. Stern, Observable bulk signatures of non-Abelian quantum Hall states. Phys. Rev. Lett. 102, 176807 (2009)

    Article  ADS  Google Scholar 

  35. N. Strohmaier, Y. Takasu, K. Günter, R. Jördens, M. Köhl, H. Moritz, T. Esslinger, Interaction-controlled transport of an ultracold Fermi gas. Phys. Rev. Lett. 99, 220601 (2007)

    Article  ADS  Google Scholar 

  36. R. Jördens, L. Tarruell, D. Greif, T. Uehlinger, N. Strohmaier, H. Moritz, T. Esslinger, L. De Leo, C. Kollath, A. Georges, V. Scarola, L. Pollet, E. Burovski, E. Kozik, M. Troyer, Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice. Phys. Rev. Lett. 104, 180401 (2010)

    Article  Google Scholar 

  37. R. Micnas, J. Ranninger, S. Robaszkiewicz, Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113 (1990)

    Article  ADS  Google Scholar 

  38. P.A. Lee, N. Nagaosa, X.-G. Wen, Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  39. W. Hofstetter, J.I. Cirac, P. Zoller, E. Demler, M.D. Lukin, High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407 (2002)

    Article  ADS  Google Scholar 

  40. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, U. Sen, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  41. S. Trebst, U. Schollwöck, M. Troyer, P. Zoller, \(d\)-Wave resonating valence bond states of fermionic atoms in optical lattices. Phys. Rev. Lett. 96, 250402 (2006)

    Article  ADS  Google Scholar 

  42. A.M. Rey, R. Sensarma, S. Fölling, M. Greiner, E. Demler, M.D. Lukin, Controlled preparation and detection of d-wave superfluidity in two-dimensional optical superlattices. Europhys. Lett. 87, 60001 (2009)

    Article  ADS  Google Scholar 

  43. F. Werner, O. Parcollet, A. Georges, S.R. Hassan, Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices. Phys. Rev. Lett. 95, 056401 (2005)

    Article  ADS  Google Scholar 

  44. A. Koetsier, R.A. Duine, I. Bloch, H.T.C. Stoof, Achieving the Néel state in an optical lattice. Phys. Rev. A 77, 023623 (2008)

    Article  ADS  Google Scholar 

  45. M. Snoek, I. Titvinidze, C. TÅ‘ke, K. Byczuk, W. Hofstetter, Antiferromagnetic order of strongly interacting fermions in a trap: real-space dynamical mean-field analysis. New J. Phys. 10, 093008 (2008)

    Article  ADS  Google Scholar 

  46. T. Esslinger, Fermi-Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1, 129 (2010)

    Article  ADS  Google Scholar 

  47. D.C. McKay, B. DeMarco, Cooling in strongly correlated optical lattices: prospects and challenges. Rep. Prog. Phys. 74, 0544401 (2011)

    Google Scholar 

  48. D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, S. Inouye, J. Stenger, W. Ketterle, Reversible formation of a Bose-Einstein condensate. Phys. Rev. Lett. 81, 2194 (1998)

    Article  ADS  Google Scholar 

  49. J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon, M. Köhl, Cooling fermionic atoms in optical lattices by shaping the confinement. Phys. Rev. A 79, 061601 (2009)

    Article  ADS  Google Scholar 

  50. F. Heidrich-Meisner, S.R. Manmana, M. Rigol, A. Muramatsu, A.E. Feiguin, E. Dagotto, Quantum distillation: dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice. Phys. Rev. A 80, 041603 (2009)

    Article  ADS  Google Scholar 

  51. W.S. Bakr, P.M. Preiss, M.E. Tai, R. Ma, J. Simon, M. Greiner, Orbital excitation blockade and algorithmic cooling in quantum gases. Nature 480, 500 (2011)

    Article  ADS  Google Scholar 

  52. W. Bakr, J. Gillen, A. Peng, S. Fölling, M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74 (2009)

    Google Scholar 

  53. J. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  54. W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547 (2010)

    Article  ADS  Google Scholar 

  55. C. Weitenberg, M. Endres, J. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, S. Kuhr, Single-spin addressing in an atomic Mott insulator. Nature 471, 319 (2011)

    Article  ADS  Google Scholar 

  56. T.-L. Ho, Q. Zhou, Squeezing out the entropy of fermions in optical lattices. Proc. Natl. Acad. Sci. U S A 106, 6916 (2009)

    Article  ADS  Google Scholar 

  57. J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, M. Inguscio, Entropy exchange in a mixture of ultracold atoms. Phys. Rev. Lett. 103, 140401 (2009)

    Article  ADS  Google Scholar 

  58. D. McKay, B. DeMarco, Thermometry with spin-dependent lattices. New J. Phys. 12, 055013 (2010)

    Article  ADS  Google Scholar 

  59. A.F. Ho, M.A. Cazalilla, T. Giamarchi, Quantum simulation of the Hubbard model: the attractive route. Phys. Rev. A 79, 033620 (2009)

    Article  ADS  Google Scholar 

  60. T. Gottwald, P.G.J. van Dongen, Antiferromagnetic order of repulsively interacting fermions on optical lattices. Phys. Rev. A 80, 033603 (2009)

    Article  ADS  Google Scholar 

  61. B. Wunsch, L. Fritz, N.T. Zinner, E. Manousakis, E. Demler, Magnetic structure of an imbalanced Fermi gas in an optical lattice. Phys. Rev. A 81, 013616 (2010)

    Article  ADS  Google Scholar 

  62. T.A. Corcovilos, S.K. Baur, J.M. Hitchcock, E.J. Mueller, R.G. Hulet, Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering. Phys. Rev. A 81, 013415 (2010)

    Article  ADS  Google Scholar 

  63. E. Altman, E. Demler, M.D. Lukin, Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004)

    Article  ADS  Google Scholar 

  64. S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, I. Bloch, Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481 (2005)

    Article  ADS  Google Scholar 

  65. T. Rom, T. Best, D. van Oosten, U. Schneider, S. Fölling, B. Paredes, I. Bloch, Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice. Nature 444, 733 (2006)

    Article  ADS  Google Scholar 

  66. S. Fölling, Probing Strongly Correlated States of Ultracold Atoms in Optical Lattices. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, (2008)

    Google Scholar 

  67. G.M. Bruun, O.F. Syljuåsen, K.G.L. Pedersen, B.M. Andersen, E. Demler, A.S. Sørensen, Antiferromagnetic noise correlations in optical lattices. Phys. Rev. A 80, 033622 (2009)

    Article  ADS  Google Scholar 

  68. P. Ernst, S. Götze, J. Krauser, K. Pyka, D.-S. Lühmann, D. Pfannkuche, K. Sengstock, Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy. Nat. Phys. 6, 56 (2009)

    Article  Google Scholar 

  69. J.T. Stewart, J.P. Gaebler, D.S. Jin, Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744 (2008)

    Article  ADS  Google Scholar 

  70. T. Stöferle, H. Moritz, C. Schori, M. Köhl, T. Esslinger, Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004)

    Article  ADS  Google Scholar 

  71. C. Kollath, A. Iucci, I.P. McCulloch, T. Giamarchi, Modulation spectroscopy with ultracold fermions in an optical lattice. Phys. Rev. A 74, 041604 (2006)

    Article  ADS  Google Scholar 

  72. D. Greif, L. Tarruell, T. Uehlinger, R. Jördens, T. Esslinger, Probing nearest-neighbor correlations of ultracold fermions in an optical lattice. Phys. Rev. Lett. 106, 145302 (2011)

    Article  ADS  Google Scholar 

  73. J. Simon, W. Bakr, R. Ma, E. Tai, P. Preiss, M. Greiner, Quantum simulation of an antiferromagnetic spin chain in an optical lattice. Nature 472, 307 (2011)

    Article  ADS  Google Scholar 

  74. T.-L. Ho, Q. Zhou, Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nat. Phys. 6, 131 (2010)

    Article  Google Scholar 

  75. P.N. Ma, L. Pollet, M. Troyer, Measuring the equation of state of trapped ultracold bosonic systems in an optical lattice with in situ density imaging. Phys. Rev. A 82, 033627 (2010)

    Article  ADS  Google Scholar 

  76. S. Nascimbéne, N. Navon, K.J. Jiang, F. Chevy, C. Salomon, Exploring the thermodynamics of a universal Fermi gas. Nature 463, 1057 (2010)

    Article  ADS  Google Scholar 

  77. N. Navon, S. Nascimbene, F. Chevy, C. Salomon, The equation of state of a low-temperature Fermi gas with tunable interactions. Science 328, 729 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Will .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Will, S. (2013). Interacting Fermions in Optical Lattice Potentials. In: From Atom Optics to Quantum Simulation. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33633-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33633-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33632-4

  • Online ISBN: 978-3-642-33633-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics