Advertisement

Extending Ontology-Based Databases with Behavioral Semantics

  • Youness Bazhar
  • Chedlia Chakroun
  • Yamine Aït-Ameur
  • Ladjel Bellatreche
  • Stéphane Jean
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7566)

Abstract

Recently, Ontology-Based DataBases (OBDB) have been developed as a solution to store and manipulate, efficiently and in a scalable way, ontologies together with data they describe. Currently, existing OBDBs propose weak solutions to calculate derived (non-canonical) concepts. Indeed, these solutions are internal to the OBDB and specific to the ontology model (formalism) supported. As a consequence, non-canonical concepts can not be in all cases properly defined with the different available mechanisms since existing solutions are not constantly suitable. In this paper, we propose a generic solution which is an extension of OBDBs with the capability to introduce dynamically operators to calculate non-canonical concepts. These operators can be implemented in different ways (e.g. with external programs or with web services). Then, we show the interest of this extension by improving a proposed methodology to design databases storing ontologies. Finally, a prototype implementing our design approach is outlined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The ics-forth rdfsuite: Managing voluminous rdf description bases. In: SemWeb (2001)Google Scholar
  2. 2.
    Bazhar, Y.: Handling behavioral semantics in persistent meta-modeling systems. In: Proceedings of the Sixth IEEE International Conference on Research Challenges in Information Science, RCIS, Valencia, Spain (May 2012)Google Scholar
  3. 3.
    Bazhar, Y., Ameur, Y.A., Jean, S., Baron, M.: A flexible support of non canonical concepts in ontology-based databases. In: WEBIST, pp. 393–398 (2012)Google Scholar
  4. 4.
    Bellatreche, L., Ameur, Y.A., Chakroun, C.: A design methodology of ontology based database applications. Logic Journal of the IGPL 19(5), 648–665 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borgida, A., Brachman, R.J.: Loading data into description reasoners. SIGMOD Record 22(2), 217–226 (1993)CrossRefGoogle Scholar
  6. 6.
    Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. World Wide Web Consortium (February 2004), http://www.w3.org/TR/rdf-schema
  7. 7.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Calbimonte, J.-P., Porto, F., Maria Keet, C.: Functional dependencies in owl abox. In: SBBD, pp. 16–30 (2009)Google Scholar
  9. 9.
    Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: Implementing the Semantic Web Recommendations. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters (WWW 2004), pp. 74–83. ACM Press, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Chakroun, C., Bellatreche, L., Ait-Ameur, Y.: The Role of Class Dependencies in Designing Ontology-Based Databases. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2011 Workshops. LNCS, vol. 7046, pp. 444–453. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF Querying Scheme. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB 2005), pp. 1216–1227 (2005)Google Scholar
  12. 12.
    Das, S., Chong, E.I., Eadon, G., Srinivasan, J.: Supporting ontology-based semantic matching in rdbms. In: VLDB, pp. 1054–1065 (2004)Google Scholar
  13. 13.
    Dean, M., Schreiber: Web Ontology Language Reference. W3C Recommendation (2004)Google Scholar
  14. 14.
    Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An Ontology-Based Database for Data Intensive Applications. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 497–508. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Harris, S., Gibbins, N.: 3store: Efficient bulk RDF Storage. In: Proceedings of the 1st International Workshop on Practical and Scalable Semantic Systems (PPP 2003), pp. 1–15 (2003)Google Scholar
  16. 16.
    Jean, S., Aït-Ameur, Y., Pierra, G.: Querying Ontology Based Database Using OntoQL (An Ontology Query Language). In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 704–721. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Jean, S., Aït-Ameur, Y., Pierra, G.: Querying ontology based databases - the ontoql proposal. In: SEKE, pp. 166–171 (2006)Google Scholar
  18. 18.
    Lu, J., Ma, L., Zhang, L., Brunner, J.-S., Wang, C., Pan, Y., Yu, Y.: Sor: A practical system for ontology storage, reasoning and search. In: VLDB, pp. 1402–1405 (2007)Google Scholar
  19. 19.
    Manola, F., Miller, E.: RDF Primer. World Wide Web Consortium (February 2004), http://www.w3.org/TR/rdf-primer
  20. 20.
    Mei, J., Ma, L., Pan, Y.: Ontology Query Answering on Databases. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 445–458. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Pan, Z., Heflin, J.: Dldb: Extending relational databases to support semantic web queries. In: PSSS (2003)Google Scholar
  22. 22.
    Park, M.-J., Lee, J.-H., Lee, C.-H., Lin, J., Serres, O., Chung, C.-W.: An Efficient and Scalable Management of Ontology. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 975–980. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Petrini, J., Risch, T.: SWARD: Semantic Web Abridged Relational Databases. In: Proceedings of the 18th International Conference on Database and Expert Systems Applications (DEXA 2007), pp. 455–459 (2007)Google Scholar
  24. 24.
    Pierra, G.: Context Representation in Domain Ontologies and Its Use for Semantic Integration of Data. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 174–211. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Pierra, G., Sardet, E.: ISO 13584-32 Industrial automation systems and integration Parts library Part 32: Implementation resources: OntoML: Product ontology markup language. ISO (2010)Google Scholar
  26. 26.
    Romero, O., Calvanese, D., Abelló, A., Rodriguez-Muro, M.: Discovering functional dependencies for multidimensional design. In: DOLAP, pp. 1–8 (2009)Google Scholar
  27. 27.
    Sirin, E., Parsia, B.: Pellet: An owl dl reasoner. In: Description Logics (2004)Google Scholar
  28. 28.
    Stocker, M., Smith, M.: Owlgres: A scalable owl reasoner. In: OWLED (2008)Google Scholar
  29. 29.
    Volz, R., Staab, S., Motik, B.: Incrementally Maintaining Materializations of Ontologies Stored in Logic Databases. In: Spaccapietra, S., Bertino, E., Jajodia, S., King, R., McLeod, D., Orlowska, M.E., Strous, L. (eds.) Journal on Data Semantics II. LNCS, vol. 3360, pp. 1–34. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Youness Bazhar
    • 1
  • Chedlia Chakroun
    • 1
  • Yamine Aït-Ameur
    • 2
  • Ladjel Bellatreche
    • 1
  • Stéphane Jean
    • 1
  1. 1.LIAS - ISAE ENSMA and University of PoitiersFuturoscopeFrance
  2. 2.IRIT - INPT ENSEEIHTToulouseFrance

Personalised recommendations