Context-Dependent Fuzzy Queries in SQLf

  • Claudia Jiménez
  • Hernán Álvarez
  • Leonid Tineo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7566)


Fuzzy set theory has been used for extending the database language capabilities in order to admit vague queries. SQLf language is one of the most recognized efforts regarding this tendency, but it has limitations to interpret context-dependent vague terms. These terms are used as filtering criteria to retrieve database objects. This paper presents an improvement of SQLf language that adding inductive capabilities to the querying engine. This allows the discovering of the semantics of vague terms, in an autonomous and dynamic way. In the discovering of the meaning of vague terms, looking for more flexibility, our proposal considers different granularity levels in the fuzzy partitions required for the object categorization.


Adaptive Fuzzy Systems Flexible Querying Fuzzy Database Technology Fuzzy Partition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bordogna, G., Psaila, G.: Customizable flexible querying for classical relational databases. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 191–217. Idea Group Inc., IGI (2008)Google Scholar
  2. 2.
    Bosc, P., Pivert, O.: SQLF: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems 3(1), 1–17 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A Server for Fuzzy SQL Queries. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495, pp. 164–174. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Galindo, J.: Introduction and trends in fuzzy logic and fuzzy databases. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases. Idea Group Inc., IGI (2008)Google Scholar
  5. 5.
    Goncalves, M., González, C., Tineo, L.: A New Upgrade to SQLf: Towards a Standard in Fuzzy Databases. In: Proc. of DEXA 2009 Workshops (2009)Google Scholar
  6. 6.
    Herrera, F., Herrera-Viedma, E.: Aggregation operators for linguistic weighted information. IEEE Trans. on Systems, Man and Cibernetics 27, 268–290 (1997)Google Scholar
  7. 7.
    Information Technology Laboratory (ITL), Statistical reference data sets archives,
  8. 8.
    Johnson, R., Wichern, D.: Applied Multivariate Statistical Analysis. Pearson (2008)Google Scholar
  9. 9.
    Kackprzyk, J., Zadrozny, S.: Computing with words in intelligent database querying: standalone and Internet-based applications. Inform. Sciences 134, 71–109 (2001)CrossRefGoogle Scholar
  10. 10.
    Ma, Z.M., Yan, L.: A Literature Overview of Fuzzy Conceptual Data Modeling. Journal of Information Science and Engineering 26(2), 427–441 (2010)Google Scholar
  11. 11.
    Mencar, C.: Theory of Fuzzy Information Granulation: Contributions to Interpretability Issues. Doctoral Thesis. Universidad de Bari. Italia (2004),
  12. 12.
    Neter, J., Wasserman, W.: Applied Linear Regression Analysis. Wiley, New York (2001)Google Scholar
  13. 13.
    Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial College Press (2012)Google Scholar
  14. 14.
    Trillas, E., Alsina, C., Pradera, A.: On a class of fuzzy set theories. In: IEEE, Fuzzy Systems Conference International (2007),
  15. 15.
    Tudorie, C.: Qualifying objects in classical relational databases. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 218–249. Idea Group Inc., IGI (2008)Google Scholar
  16. 16.
    Yager, R.: Soft Querying of Standard and Uncertain Databases. IEEE Transactions on Fuzzy Systems 18(2), 336–347 (2010)MathSciNetGoogle Scholar
  17. 17.
    Zadeh, L.A.: The concept of linguistic variable and its application to approximate reasoning. Information Science 8(3), 199–249 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Zhao, F., Ma, Z.M.: Vague Query Based on Vague Relational Model. In: Yu, W., Sanchez, E.N. (eds.) Advances in Computational Intelligence. AISC, vol. 61, pp. 229–238. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claudia Jiménez
    • 1
  • Hernán Álvarez
    • 2
  • Leonid Tineo
    • 3
    • 4
  1. 1.Department of Computer ScienceNational University of ColombiaMedellínColombia
  2. 2.Department of Processes and EnergyNational University of ColombiaMedellínColombia
  3. 3.Departamento de ComputaciónUniversidad Simón BolívarCaracasVenezuela
  4. 4.Centro de Análisis, Modelado y Tratamiento de Datos, CAMYTD, Facultad de Ciencias y TecnologíaUniversidad de CaraboboVenezuela

Personalised recommendations