Skip to main content

Wave-Induced Seabed Response in Non-homogeneous Anisotropic Seabed

  • Chapter
Porous Models for Wave-seabed Interactions
  • 1065 Accesses

Abstract

In a natural seabed, the soil properties is complicated, which normally vary with soil depth, change of temperature, and geographic characteristics. Furthermore, anisotropic soil behavior is commonly observed in marine sediments. However, most previous studies have been limited to the case of isotropic seabed with uniform soil characteristics. This chapter consists of three major components: (i) analytical solutions for a seabed with variable permeability; (ii) analytical solution for a cross-isotropic seabed; and (iii) numerical model for a non-homogeneous seabed with cross-anisotropic soil behavior. With the newly analytical solutions and numerical model, effects of variable permeability and cross-isotropic soil behavior on the wave-induced seabed response were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson, J.H.: Anisotropic elastic deformation in laboratory tests on unsaturated London clay. Géotechnique 25(2), 357–374 (1975)

    Article  Google Scholar 

  2. Barden, L.: Stresses and displacements in a cross-anisotropic soil. Géotechnique 13, 198–210 (1963)

    Article  Google Scholar 

  3. Bennett, R.H., Fischer, K.M., Li, H., Lamber, D.H., Hulbert, M.H., Yamamoto, T., Badiey, M.: In-situ porosity and permeability of selected carbonate sediments: Great Bahama Bank. Part 2. Microfabric. Mar. Geotechnol. 9(1), 29–47 (1990)

    Article  Google Scholar 

  4. Bennett, R.H., Li, H., Lamber, D.H., Fischer, K.M., Walter, D.J., Hickox, C.E., Hulbert, M.H., Yamamoto, T., Badiey, M.: In-situ porosity and permeability of selected carbonate sediments: Great Bahama Bank. Part 1: Measurements. Mar. Geotechnol. 9(1), 1–28 (1990)

    Article  Google Scholar 

  5. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 26(2), 155–164 (1941)

    Article  Google Scholar 

  6. Bryant, W.R., Hottman, W., Trabant, P.: Permeability of unconsolidated and consolidated sediments, Gulf of Mexico. Mar. Geotechnol. 1(1), 1–14 (1975)

    Article  Google Scholar 

  7. Esrig, M.I., Kirby, R.C.: Implication of gas content for predicting the stability of submarine slopes. Mar. Geotechnol. 17, 58–67 (1977)

    Google Scholar 

  8. Gatmiri, B.: A simplified finite element analysis of wave-induced effective stress and pore pressures in permeable sea beds. Géotechnique 40(1), 15–30 (1990)

    Article  Google Scholar 

  9. Gatmiri, B.: Response of cross-anisotropic seabed to ocean waves. J. Geotech. Eng. 118(9), 1295–1314 (1992)

    Article  Google Scholar 

  10. Gazetas, G.: Stresses and displacements in cross-anisotropic soils. J. Geotech. Eng. Div. 108(4), 532–553 (1982)

    Google Scholar 

  11. Graham, J., Houlsby, G.T.: Anisotropic elasticity of a natural clay. Géotechnique 33(2), 165–180 (1983)

    Article  Google Scholar 

  12. Hsu, J.R.C., Jeng, D.S.: Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness. Int. J. Numer. Anal. Methods Geomech. 18(11), 785–807 (1994)

    Article  Google Scholar 

  13. Hsu, J.R.C., Jeng, D.S., Tsai, C.P.: Short-crested wave-induced soil response in a porous seabed of infinite thickness. Int. J. Numer. Anal. Methods Geomech. 17(8), 553–576 (1993)

    Article  Google Scholar 

  14. Jeng, D.S.: Wave-induced liquefaction potential in a cross-anisotropic seabed. J. Chin. Inst. Eng. 19(1), 59–70 (1996)

    Article  Google Scholar 

  15. Jeng, D.S.: Soil response in cross-anisotropic seabed due to standing waves. J. Geotech. Geoenviron. Eng. 123(1), 9–19 (1997)

    Article  Google Scholar 

  16. Jeng, D.S.: Wave-induced seabed instability in front of a breakwater. Ocean Eng. 24(10), 887–917 (1997)

    Article  Google Scholar 

  17. Jeng, D.S.: Wave-induced seabed response in front of a breakwater. Ph.D. thesis, University of Western Australia (1997)

    Google Scholar 

  18. Jeng, D.S.: Effect of cross-anisotropic soil behaviour on the wave-induced seabed response. Géotechnique 48(4), 555–561 (1998)

    Article  Google Scholar 

  19. Jeng, D.S.: Wave-induced seabed response in a cross-anisotropic seabed in front of a breakwater: An analytical solution. Ocean Eng. 25(1), 49–67 (1998)

    Article  Google Scholar 

  20. Jeng, D.S.: Mechanism of the wave-induced seabed response in the vicinity of a breakwater: A review. Ocean Eng. 28(5), 539–572 (2001)

    Article  Google Scholar 

  21. Jeng, D.S., Hsu, J.R.C.: Wave-induced soil response in a nearly saturated seabed of finite thickness. Géotechnique 46(3), 427–440 (1996)

    Article  Google Scholar 

  22. Jeng, D.S., Lin, Y.S.: Finite element modelling for water waves-soil interaction. Soil Dyn. Earthq. Eng. 15(5), 283–300 (1996)

    Article  Google Scholar 

  23. Jeng, D.S., Lin, Y.S.: Poroelastic analysis for wave-seabed interaction problem. Comput. Geotech. 26(1), 43–64 (2000)

    Article  Google Scholar 

  24. Jeng, D.S., Seymour, B.R.: Response in seabed of finite depth with variable permeability. J. Geotech. Geoenviron. Eng. 123(10), 902–911 (1997)

    Article  Google Scholar 

  25. Jeng, D.S., Seymour, B.R.: Short-crested wave-induced seabed response with variable permeability. J. Chin. Inst. Eng. 20(4), 377–388 (1997)

    Article  Google Scholar 

  26. Jeng, D.S., Seymour, B.R.: Wave-induced pore pressure and effective stresses in a porous seabed with variable permeability. J. Offshore Mech. Arct. Eng. 119(4), 226–233 (1997)

    Article  Google Scholar 

  27. Kirkgard, M.M., Lade, P.V.: Anisotropy of normally consolidated San Francisco bay mud. Geotech. Test. J. 14(3), 231–246 (1991)

    Article  Google Scholar 

  28. Koning, K.: Stress distribution in a homogeneous anisotropic elastic semi-infinite solid. In: Fourth International Conference of Soil Mechanics and Foundations Engineering, pp. 335–338 (1957)

    Google Scholar 

  29. Lin, Y.S., Jeng, D.S.: Short-crested wave-induced liquefaction in porous seabed. J. Geotech. Geoenviron. Eng. 126(5), 481–494 (2000)

    Article  Google Scholar 

  30. Madsen, O.S.: Wave-induced pore pressures and effective stresses in a porous bed. Géotechnique 28(4), 377–393 (1978)

    Article  Google Scholar 

  31. Okusa, S.: Wave-induced stress in unsaturated submarine sediments. Géotechnique 35(4), 517–532 (1985)

    Article  Google Scholar 

  32. Pickering, D.J.: Anisotropic elastic parameters for soil. Géotechnique 20(3), 271–276 (1970)

    Article  Google Scholar 

  33. Pietruszczak, S., Pande, G.N.: Constitutive relations for partially saturated soils containing gas inclusions. J. Geotech. Eng. 122(1), 50–59 (1996)

    Article  Google Scholar 

  34. Rahman, M.S.: Wave-induced instability of seabed: Mechanism and conditions. Mar. Geotechnol. 10, 277–299 (1991)

    Article  Google Scholar 

  35. Raman-Nair, W., Sabin, G.C.W.: Wave-induced failure of poro-plastic seabed slopes: A boundary element study. Proc. Inst. Civ. Eng. 2. Res. Theory 91, 771–794 (1991)

    Article  Google Scholar 

  36. Rowe, P.W.: Measurement of the coefficient of consolidation of lacustrine clay. Géotechnique 9(3), 107–118 (1959)

    Article  Google Scholar 

  37. Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. A 269, 500–527 (1962)

    Article  Google Scholar 

  38. Samarasinghe, A.M., Huang, Y.H., Drnevich, V.P.: Permeability and consolidation of normal consolidated soils. J. Geotech. Eng. Div. 108(6), 835–849 (1982)

    Google Scholar 

  39. Seymour, B.R., Jeng, D.S., Hsu, J.R.C.: Transient soil response in a porous seabed with variable permeability. Ocean Eng. 23(1), 27–46 (1996)

    Article  Google Scholar 

  40. Seymour, B.R., Varley, E.: Exact solutions describing soliton-like interactions in a nondispersive medium. SIAM J. Appl. Math. 42(4), 804–821 (1982)

    Article  Google Scholar 

  41. Seymour, B.R., Varley, E.: Exact representations for acoustical waves when the sound speed varies in space and time. Stud. Appl. Math. 76, 1–35 (1987)

    Google Scholar 

  42. Silvester, R., Hsu, J.R.C.: Sines revisited. J. Waterw. Port Coast. Ocean Eng. 115(3), 327–344 (1989)

    Article  Google Scholar 

  43. Thomas, S.D.: A finite element model for the analysis of wave induced stresses, displacements and pore pressure in an unsaturated seabed. I: Theory. Comput. Geotech. 8(1), 1–38 (1989)

    Article  Google Scholar 

  44. Thomas, S.D.: A finite element model for the analysis of wave induced stresses, displacements and pore pressure in an unsaturated seabed. II: Model verification. Comput. Geotech. 17(1), 107–132 (1995)

    Article  Google Scholar 

  45. Varley, E., Seymour, B.R.: Exact solution for large amplitude waves in dispersive and dissipative systems. Stud. Appl. Math. 72, 241–262 (1985)

    Google Scholar 

  46. Varley, E., Seymour, B.R.: A method for obtaining exact solutions to partial differential equations with variable coefficients. Stud. Appl. Math. 78, 183–225 (1988)

    Google Scholar 

  47. Varley, E., Seymour, B.R.: Application of exact solutions to the Navier-Stokes equations: Free shear layers. J. Fluid Mech. 274, 267–291 (1995)

    Article  Google Scholar 

  48. Wiendieck, K.: L’anisotropie des milieux pulvérulents et son influence sur les tassements. Publications Scientiques du Ministere de l’Air (1968)

    Google Scholar 

  49. Wolf, K.: Distribution of stress in a half plane and a half space of anisotropic material. Z. Angew. Math. Mech. 15, 249–254 (1945)

    Article  Google Scholar 

  50. Yamada, Y., Ishihara, K.: Anisotropic deformation characteristics of sand under three dimensional stress conditions. Soil Found. 19(2), 79–94 (1979)

    Article  Google Scholar 

  51. Yamamoto, T., Koning, H., Sellmeijer, H., Hijum, E.V.: On the response of a poro-elastic bed to water waves. J. Fluid Mech. 87(1), 193–206 (1978)

    Article  Google Scholar 

  52. Zen, K., Yamazaki, H.: Mechanism of wave-induced liquefaction and densification in seabed. Soil Found. 30(4), 90–104 (1990)

    Article  Google Scholar 

  53. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. McGraw-Hill, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Shanghai Jiao Tong University Press and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeng, DS. (2013). Wave-Induced Seabed Response in Non-homogeneous Anisotropic Seabed. In: Porous Models for Wave-seabed Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33593-8_5

Download citation

Publish with us

Policies and ethics