Skip to main content

Abstract

In this chapter, a comprehensive literature review for the wave-seabed interactions in marine sediments, including wave-seabed-structure interactions, was provided. In this review, the major outcomes of the existing research were summarized. The objective of this chapter is to provide readers an overall understanding of the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bea, R.G., Wright, S.G., Sircar, O.P., Niedoroda, A.W.: Wave-induced slides in south pass block 70, Mississippi Delta. J. Geotech. Eng. 109(1), 617–644 (1975)

    Google Scholar 

  2. Bennett, R.H.: Pore-water pressure measurements: Mississippi Delta submarine sediments. Mar. Geotechnol. 2, 177–189 (1978)

    Google Scholar 

  3. Bennett, R.H., Faris, J.R.: Ambient and dynamic pore pressures in fine-grained submarine sediments: Mississippi. Appl. Ocean Res. 1(3), 115–123 (1979)

    Article  Google Scholar 

  4. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 26(2), 155–164 (1941)

    Article  Google Scholar 

  5. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, Part I: Low frequency range. J. Acoust. Soc. Am. 28, 168–177 (1956)

    Article  Google Scholar 

  6. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, Part II: High frequency range. J. Acoust. Soc. Am. 28, 178–191 (1956)

    Google Scholar 

  7. Bjerrum, J.: Geotechnical problem involved in foundations of structures in the North Sea. Géotechnique 23(3), 319–358 (1973)

    Article  Google Scholar 

  8. Cha, D.H., Jeng, D.S., Rahman, M.S., Sekiguchi, H., Zen, K., Yamazaki, H.: Effects of dynamic soil behaviour on the wave-induced seabed response. Int. J. Ocean Eng. Technol. 16(21–33), 5 (2002)

    Google Scholar 

  9. Chen, T.W., Huang, L.H., Song, C.H.: Dynamic response of poroelastic bed to nonlinear water waves. J. Eng. Mech. 123(10), 1041–1049 (1997)

    Article  Google Scholar 

  10. Cheng, L., Sumer, B.M., Fredsöe, J.: Solution of pore pressure build up due to progressive waves. Int. J. Numer. Anal. Methods Geomech. 25, 885–907 (2001)

    Article  Google Scholar 

  11. Dagan, G.: The generalization of Darcy law for nonuniform flows. Water Resour. Res. 15(1), 1–7 (1979)

    Article  Google Scholar 

  12. Dawson, T.H.: Wave propagation over a deformable sea floor. Ocean Eng. 5, 227–234 (1978)

    Article  Google Scholar 

  13. Demars, K.R., Vanover, E.A.: Measurement of wave-induced pressures and stresses in a sand bed. Mar. Geotechnol. 6(1), 29–59 (1985)

    Article  Google Scholar 

  14. Finn, W.D.L., Siddharthan, R., Martin, G.R.: Response of seafloor to ocean waves. J. Geotech. Eng. 109(4), 556–572 (1983)

    Article  Google Scholar 

  15. Flaten, G., Rygg, O.B.: Dispersive shallow water waves over a porous sea bed. Coast. Eng. 15, 347–369 (1991)

    Article  Google Scholar 

  16. Foda, M.A.: Sea Floor Dynamics, vol. 1, pp. 77–123. World Scientific, Singapore (1995)

    Google Scholar 

  17. Gade, H.: Effects of a non-rigid impermeable bottom on plane surface waves in shallow water. J. Mar. Res. 16, 61–82 (1958)

    Google Scholar 

  18. Gatmiri, B.: A simplified finite element analysis of wave-induced effective stress and pore pressures in permeable sea beds. Géotechnique 40(1), 15–30 (1990)

    Article  Google Scholar 

  19. Gatmiri, B.: Response of cross-anisotropic seabed to ocean waves. J. Geotech. Eng. 118(9), 1295–1314 (1992)

    Article  Google Scholar 

  20. Gu, Z., Wang, H.: Gravity waves over porous bottoms. Coast. Eng. 15, 497–524 (1991)

    Article  Google Scholar 

  21. Henkel, D.H.: The role of waves in causing submarine landslides. Géotechnique 20(1), 75–80 (1970)

    Article  Google Scholar 

  22. Hoeg, K.: Geotechnical issues in offshore engineering, In: ASTM Special Technical Publication, vol. 923, pp. 7–50 (1986)

    Google Scholar 

  23. Horikawa, K.: Nearshore Dynamics and Coastal Processes. University of Tokyo Press, Japan (1988)

    Google Scholar 

  24. Hsiao, S.V., Shemdin, O.H.: Interaction of ocean waves soil bottom. J. Phys. Oceanogr. 10, 605–610 (1980)

    Article  Google Scholar 

  25. Hsieh, P.C., Huang, L.H., Wang, T.W.: Dynamic response of soft poroelastic bed to linear water waves—a boundary layer approximation. Int. J. Numer. Anal. Methods Geomech. 25, 651–674 (2001)

    Article  Google Scholar 

  26. Hsu, J.R.C., Jeng, D.S.: Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness. Int. J. Numer. Anal. Methods Geomech. 18(11), 785–807 (1994)

    Article  Google Scholar 

  27. Huang, L.H., Chwang, A.T.: Trapping and absorption of sound waves. II: A sphere covered with a porous layer. Wave Motion 12, 401–414 (1990)

    Article  Google Scholar 

  28. Huang, L.H., Song, C.H.: Dynamic response of poro-plastic bed to water waves. J. Hydraul. Eng. 119(9), 1003–1020 (1993)

    Article  Google Scholar 

  29. Ishihara, K., Yamazaki, A.: Analysis of wave-induced liquefaction in seabed deposit of sand. Soil Found. 24(3), 85–100 (1984)

    Article  Google Scholar 

  30. Jeng, D.S.: Wave-induced liquefaction potential in a cross-anisotropic seabed. J. Chin. Inst. Eng. 19(1), 59–70 (1996)

    Article  Google Scholar 

  31. Jeng, D.S.: Discussion of “Response of poro-elastic beds to standing wave” by Sekiguchi et al. Soil Found. 37(2), 139 (1997)

    Google Scholar 

  32. Jeng, D.S.: Soil response in cross-anisotropic seabed due to standing waves. J. Geotech. Geoenviron. Eng. 123(1), 9–19 (1997)

    Article  Google Scholar 

  33. Jeng, D.S.: Wave-induced seabed instability in front of a breakwater. Ocean Eng. 24(10), 887–917 (1997)

    Article  Google Scholar 

  34. Jeng, D.S.: On calculating the length of a short-crested wave over a porous seabed. Appl. Ocean Res. 22(2), 63–73 (2000)

    Article  Google Scholar 

  35. Jeng, D.S.: A new wave dispersion equation: Effects of soil characteristics. J. Offshore Mech. Arct. Eng. 125(4), 177–181 (2001)

    Article  Google Scholar 

  36. Jeng, D.S.: Wave dispersion equation in a porous seabed. Ocean Eng. 28(12), 1585–1599 (2001)

    Article  Google Scholar 

  37. Jeng, D.S.: Discussion to “Simplified solution of wave-induced seabed response in anisotropic seabed” by Yuhi and Ishida. J. Waterw. Port Coast. Ocean Eng. 129(3), 151–153 (2003)

    Article  Google Scholar 

  38. Jeng, D.S., Cha, D.H.: Effects of dynamic soil behavior and wave non-linearity on the wave-induced pore pressure and effective stresses in porous seabed. Ocean Eng. 30(16), 2065–2089 (2003)

    Article  Google Scholar 

  39. Jeng, D.S., Hsu, J.R.C.: Wave-induced soil response in a nearly saturated seabed of finite thickness. Géotechnique 46(3), 427–440 (1996)

    Article  Google Scholar 

  40. Jeng, D.S., Lee, T.L.: Dynamic response of porous seabed to ocean waves. Comput. Geotech. 28(2), 99–128 (2001)

    Article  Google Scholar 

  41. Jeng, D.S., Li, L., Barry, D.A.: Wave-induced seepage into seabed. Int. J. Numer. Anal. Methods Geomech. 25, 771–787 (2001)

    Article  Google Scholar 

  42. Jeng, D.S., Lin, Y.S.: Finite element modelling for water waves-soil interaction. Soil Dyn. Earthq. Eng. 15(5), 283–300 (1996)

    Article  Google Scholar 

  43. Jeng, D.S., Lin, Y.S.: Non-linear wave-induced response of porous seabed: A finite element analysis. Int. J. Numer. Anal. Methods Geomech. 21(1), 15–42 (1997)

    Article  Google Scholar 

  44. Jeng, D.S., Lin, Y.S.: Poroelastic analysis for wave-seabed interaction problem. Comput. Geotech. 26(1), 43–64 (2000)

    Article  Google Scholar 

  45. Jeng, D.S., Oh, Y.N., Chen, S.: DDA-ESM for wave-induced pore pressure and effective stresses in a porous seabed. In: The Second International Conference on Advances in Structural Engineering and Mechanics (ASEM02). (CD ROM) Korea (2002)

    Google Scholar 

  46. Jeng, D.S., Rahman, M.S.: Effective stresses in a porous seabed of finite thickness: Inertia effects. Can. Geotech. J. 37(4), 1388–1397 (2000)

    Google Scholar 

  47. Jeng, D.S., Rahman, M.S.: Wave-induced oscillatory soil response: Difference between quasi-static and dynamic solutions. In: Computer Methods and Advances in Geomechanics, vol. 2, pp. 1103–1106. A.A. Balkema, The Netherlands (2001)

    Google Scholar 

  48. Jeng, D.S., Rahman, M.S., Lee, T.L.: Effects of inertia forces on wave-induced seabed response. Int. J. Offshore Polar Eng. 9(4), 307–313 (1999)

    Google Scholar 

  49. Jeng, D.S., Seymour, B.R.: Response in seabed of finite depth with variable permeability. J. Geotech. Geoenviron. Eng. 123(10), 902–911 (1997)

    Article  Google Scholar 

  50. Jeng, D.S., Seymour, B.R.: Wave-induced pore pressure and effective stresses in a porous seabed with variable permeability. J. Offshore Mech. Arct. Eng. 119(4), 226–233 (1997)

    Article  Google Scholar 

  51. Kitano, T., Mase, H.: Boundary-layer theory for anisotropic seabed response to sea waves. J. Waterw. Port Coast. Ocean Eng. 125(4), 187–194 (1999)

    Article  Google Scholar 

  52. Kitano, T., Mase, H.: Wave-induced porewater pressure in a seabed with inhomogeneous permeability. Ocean Eng. 28, 279–296 (2001)

    Article  Google Scholar 

  53. Kitano, T., Mase, H., Nakano, S.: Effects of inhomogeneity of permeability on wave-induced porewater pressure in seabed. In: Canadian Coastal Conference, pp. 611–623 (1999)

    Google Scholar 

  54. Lee, H.J., Edwards, B.D.: Regional method to assess offshore slope stability. J. Geotech. Eng. 112(5), 489–509 (1986)

    Article  Google Scholar 

  55. Lee, T.L., Tsai, C.P., Jeng, D.S.: Analytical solution of wave-induced seabed response: Effects of inertia forces. Ocean Eng. 29(12), 1577–1601 (2002)

    Article  Google Scholar 

  56. Lee, T.L., Tsai, C.P., Jeng, D.S.: Ocean waves propagating over a coulomb-damped poroelastic seabed of finite thickness: An analytical solution. Comput. Geotech. 29(2), 119–149 (2002)

    Article  Google Scholar 

  57. Li, X., Zhang, J., Zhang, H.: Instability of wave propagation in saturated poroelastoplastic media. Int. J. Numer. Anal. Methods Geomech. 26, 563–578 (2002)

    Article  Google Scholar 

  58. Lin, M.: The analysis of silt behaviour induced by water waves. Sci. China Ser. E 31(1), 86–96 (2001)

    Google Scholar 

  59. Lin, M., Jeng, D.S.: Comparison of existing poroelastic models for wave damping in a porous seabed. Ocean Eng. 30(11), 1335–1352 (2003)

    Article  Google Scholar 

  60. Lin, Y.S., Jeng, D.S.: Response of poro-elastic seabed to a 3-d wave system: A finite element analysis. Coast. Eng. Jpn. 39(2), 165–183 (1996)

    Google Scholar 

  61. Lin, Y.S., Jeng, D.S.: The effect of variable permeability on the wave-induced seabed response. Ocean Eng. 24(7), 623–643 (1997)

    Article  Google Scholar 

  62. Lin, Y.S., Jeng, D.S.: Effects of variable shear modulus on wave-induced seabed response. J. Chin. Inst. Chem. Eng. 24(1), 109–115 (2000)

    Google Scholar 

  63. Liu, P.L.F.: Damping of water waves over porous bed. J. Hydraul. Div. 99(12), 2263–2271 (1973)

    Google Scholar 

  64. Liu, P.L.F.: On gravity waves propagated over a layered permeable bed. Coast. Eng. 1, 135–148 (1977)

    Article  Google Scholar 

  65. Liu, P.L.F., Dalrymple, R.A.: The damping of gravity water-waves due to percolation. Coast. Eng. 8(1), 33–49 (1984)

    Article  Google Scholar 

  66. Madga, W.: On one-dimensional model of pore pressure generation in a highly saturated sandbed due to cyclic loading acting on a sand surface. I: Theoretical description and numerical approach. Tech. rep., Internal report No. 5, SFB-205, TP A13, Kusteningenieurwesen, University Hanover (1990)

    Google Scholar 

  67. Madsen, O.S.: Wave-induced pore pressures and effective stresses in a porous bed. Géotechnique 28(4), 377–393 (1978)

    Article  Google Scholar 

  68. Maeno, Y.H., Hasegawa, T.: Evaluation of wave-induced pore pressure in sand layer by wave steepness. Coast. Eng. Jpn. 28, 31–44 (1985)

    Google Scholar 

  69. Maeno, Y.H., Hasegawa, T.: In-situ measurements of wave-induced pore pressure for predicting properties of seabed deposits. Coast. Eng. Jpn. 30(1), 99–115 (1987)

    Google Scholar 

  70. Maeno, Y.H., Sakai, T., Mase, H.: Influences of wave steepness on wave-induced liquefaction in sand layer. In: Proceedings of 6th Symposium on Coastal and Ocean Management, Coastal Zone’89, pp. 3945–3957 (1989)

    Google Scholar 

  71. Mallard, W.W., Dalrymple, R.A.: Water waves propagating over a deformable bottom. In: Proceedings 9th Annual Offshore Technology Conference, pp. 141–145 (1977)

    Google Scholar 

  72. Massel, S.R.: Gravity waves propagated over permeable bottom. J. Waterways Harbors Coast. Eng. 102(2), 111–121 (1976)

    Google Scholar 

  73. Mei, C.C., Foda, M.A.: Wave-induced response in a fluid-filled poro-elastic solid with a free surface-a boundary layer theory. Geophys. J. R. Astron. Soc. 66, 597–631 (1981)

    Article  Google Scholar 

  74. Mitchell, J.K., Hull, J.A.: Stability and bearing capacity of bottom sediments. In: Proceedings 14th International Conferences on Coastal Engineering, ASCE, vol. 2, pp. 1252–1273 (1974)

    Google Scholar 

  75. Mitchell, J.K., Tsui, K.K., Sangrey, D.A.: Failure of submarine slope under wave action. In: Proceedings 13th International Conferences on Coastal Engineering, ASCE, vol. 2, pp. 1515–1539 (1972)

    Google Scholar 

  76. Moshagen, H., Torum, A.: Wave induced pressures in permeable seabeds. J. Waterways Harbors Coast. Eng. Div. 101(1), 49–57 (1975)

    Google Scholar 

  77. Mu, Y., Cheng, A.H.D., Badiey, M., Bennett, R.: Water wave driven seepage in sediment and parameter inversion based on pore pressure data. Int. J. Numer. Anal. Methods Geomech. 23, 1655–1674 (1999)

    Article  Google Scholar 

  78. Murray, J.D.: Viscous damping of gravity waves over a permeable bed. J. Geophys. Res. 70(10), 2325–2331 (1965)

    Article  Google Scholar 

  79. Nakamura, H., Onishi, R., Minamide, H.: On the seepage in the seabed due to waves. In: Proceedings of 20th Coastal Engineering Conference, J.S.C.E., pp. 421–428 (1973)

    Google Scholar 

  80. Nataraja, M.S., Gill, H.S.: Ocean wave-induced liquefaction analysis. J. Geotech. Eng. 109(4), 573–590 (1983)

    Article  Google Scholar 

  81. Nataraja, M.S., Singh, H., Maloney, D.: Ocean wave-induced liquefaction analysis: A simplified procedure. In: Proceedings of International Symposium on Soils under Cyclic and Transient Loadings, pp. 509–516 (1980)

    Google Scholar 

  82. Okusa, S.: Measurements of wave-induced pore pressure in submarine sediments under various marine conditions. Mar. Geotechnol. 6(2), 119–144 (1985)

    Article  Google Scholar 

  83. Okusa, S.: Wave-induced stress in unsaturated submarine sediments. Géotechnique 35(4), 517–532 (1985)

    Article  Google Scholar 

  84. Okusa, S., Nakamura, T., Fukue, M.: Measurements of Wave-Induced Pore Pressure and Coefficients of Permeability of Submarine Sediments During Reversing Flow, pp. 113–122. Graham and Trotman, London (1983)

    Google Scholar 

  85. Okusa, S., Uchida, A.: Pore-water pressure change in submarine sediments due to waves. Mar. Geotechnol. 4(2), 145–161 (1980)

    Article  Google Scholar 

  86. Oldham, C.E., Lavery, P.S.: Porewater nutrient fluxes in a shallow fetch-limited estuary. Mar. Ecol. Prog. Ser. 183, 39–47 (1999)

    Article  Google Scholar 

  87. Phillips, R., Sekiguchi, H.: Generation of water wave trains in drum centrifuge. In: Proceedings of International Symposium on Technology in Ocean Engineering (Techno-Ocean’92), vol. 1, pp. 29–34 (1992)

    Google Scholar 

  88. Prevost, J.H., Eide, O., Anderson, K.H.: Discussion on “Wave induced pressures in permeable seabeds” by Moshagen and Torum. J. Waterways Harbors Coast. Eng. Div. 101(1975), 464–465 (1975)

    Google Scholar 

  89. Putnam, J.A.: Loss of wave energy due to percolation in a permeable sea bottom. Trans. Am. Geophys. Union 30(3), 349–356 (1949)

    Article  Google Scholar 

  90. Rahman, M.S.: Wave-induced instability of seabed: Mechanism and conditions. Mar. Geotechnol. 10, 277–299 (1991)

    Article  Google Scholar 

  91. Rahman, M.S.: Instability and movement of oceanfloor sediments: A review. Int. J. Offshore Polar Eng. 7(3), 220–225 (1997)

    Google Scholar 

  92. Rahman, M.S., El-Zahaby, K.: Probabilistic liquefaction risk analysis including fuzzy variables. Soil Dyn. Earthq. Eng. 16, 63–79 (1997)

    Article  Google Scholar 

  93. Rahman, M.S., El-Zahaby, K., Booker, J.: A semi-analytical method for the wave-induced seabed response. Int. J. Numer. Anal. Methods Geomech. 18, 213–236 (1994)

    Article  Google Scholar 

  94. Rahman, M.S., Jabery, W.Y.: A simplified drained analysis for wave-induced liquefaction in ocean floor sands. Soil Found. 26(1), 57–68 (1986)

    Article  Google Scholar 

  95. Rahman, M.S., Jabery, W.Y.: Submarine landslide: Element of analysis. Mar. Geotechnol. 10, 97–124 (1991)

    Article  Google Scholar 

  96. Raman-Nair, W., Sabin, G.C.W.: Wave-induced failure of poro-plastic seabed slopes: A boundary element study. Proc. Inst. Civ. Eng. 2. Res. Theory 91, 771–794 (1991)

    Article  Google Scholar 

  97. Reid, R.O., Kajiura, K.: On the damping of gravity waves over a permeable sea bed. Trans. Am. Geophys. Union 38, 662–666 (1957)

    Article  Google Scholar 

  98. Sakai, T., Hatanaka, K., Mase, H.: Wave-induced effective stress in seabed and its momentary liquefaction. J. Waterw. Port Coast. Ocean Eng. 118(2), 202–206 (1992)

    Article  Google Scholar 

  99. Sakai, T., Hattori, A., Hatanaka, K.: Wave-induced transient pore-water pressure and seabed instability in the surf zone. In: Proceeding of International Conference on Geotechnical Engineering for Coastal Development-Theory and Practice on Soft Ground, Yokohama, Japan, vol. 1, pp. 627–632 (1991)

    Google Scholar 

  100. Sakai, T., Mase, H., Matsumto, A.: Effects of inertia and gravity on seabed response to ocean waves. In: Modelling Soil-Water-Structure Interaction, pp. 61–66. A.A. Balkema, The Netherlands (1988)

    Google Scholar 

  101. Sassa, S.: Fundamental studies of wave-induced liquefaction of sand beds. Ph.D. thesis, Kyoto University, Japan (2000)

    Google Scholar 

  102. Sassa, S., Sekiguchi, H.: Wave-induced liquefaction of beds of sand in a centrifuge. Géotechnique 49(5), 621–638 (1999)

    Article  Google Scholar 

  103. Sassa, S., Sekiguchi, H.: Analysis of wave-induced liquefaction of sand beds. Géotechnique 51(2), 115–126 (2001)

    Article  Google Scholar 

  104. Sassa, S., Sekiguchi, H., Miyamamot, J.: Analysis of progressive liquefaction as moving-boundary problem. Géotechnique 51(10), 847–857 (2001)

    Article  Google Scholar 

  105. Sekiguchi, H., Kita, K., Okamoto, O.: Response of poro-elastoplastic beds to standing waves. Soil Found. 35(3), 31–42 (1995)

    Article  Google Scholar 

  106. Sekiguchi, H., Phillips, R.: Generation of water waves in a drum centrifuge. In: Proceedings of the International Conference Centrifuge, pp. 343–350 (1991)

    Google Scholar 

  107. Seymour, B.R., Jeng, D.S., Hsu, J.R.C.: Transient soil response in a porous seabed with variable permeability. Ocean Eng. 23(1), 27–46 (1996)

    Article  Google Scholar 

  108. Sleath, J.F.A.: Wave-induced pressures in beds of sand. J. Hydraul. Div. 96(2), 367–378 (1970)

    Google Scholar 

  109. Song, C.H., Huang, L.H.: Laminar poroelastic media flow. J. Eng. Mech. 126(4), 358–366 (2000)

    Article  Google Scholar 

  110. Stokoe, K.H., Isenhower, W.M., Hsu, J.R.: Dynamic properties of offshore silty samples. In: Proceedings 12th Annual Offshore Technology Conference, pp. 289–302 (1989)

    Google Scholar 

  111. Sulisz, W.: Effect of permeability on stability of rubble bases. J. Waterw. Port Coast. Ocean Eng. 121(3), 162–166 (1995)

    Article  Google Scholar 

  112. Sumer, B.M., Cheng, N.S.: A random-walk model for pore pressure accumulation in marine soils. In: The 9th International Offshore and Polar Engineering Conference (ISOPE99), vol. 1, pp. 521–528 (1999)

    Google Scholar 

  113. Sumer, B.M., Fredsøe, J.: Wave Scour Around Structures, vol. 4, pp. 191–248. World Scientific, Singapore (1997)

    Google Scholar 

  114. Sumer, B.M., Fredsoe, J.: The Mechanism of Scour in the Marine Environment. World Scientific, New Jersey (2002)

    Google Scholar 

  115. Thomas, S.D.: A finite element model for the analysis of wave induced stresses, displacements and pore pressure in an unsaturated seabed. I: Theory. Comput. Geotech. 8(1), 1–38 (1989)

    Article  Google Scholar 

  116. Thomas, S.D.: A finite element model for the analysis of wave induced stresses, displacements and pore pressure in an unsaturated seabed. II: Model verification. Comput. Geotech. 17(1), 107–132 (1995)

    Article  Google Scholar 

  117. Tsai, C.P.: Wave-induced liquefaction potential in a porous seabed in front of a breakwater. Ocean Eng. 22(1), 1–18 (1995)

    Article  Google Scholar 

  118. Tsotsos, S., Georgiadis, M., Damaskindou, A.: Numerical analysis of liquefaction potential of partially drained seafloor. Coast. Eng. 13(2), 117–128 (1989)

    Article  Google Scholar 

  119. Tsui, Y.T., Helfrich, S.C.: Wave-induced pore pressures in submerged sand layer. J. Geotech. Eng. 109(4), 603–618 (1983)

    Article  Google Scholar 

  120. Tzang, S.Y.: Water wave-induced soil fluidization in a cohesionless fine-grained seabed. Ph.D. thesis, University of California at Berkeley (1992)

    Google Scholar 

  121. Ulker, M.B.C., Rahman, M.S., Jeng, D.S.: Wave-induced response of seabed: Various formulations and their applicability. Appl. Ocean Res. 31(1), 12–24 (2009)

    Article  Google Scholar 

  122. Umehara, Y., Zen, K., Hamada, K.: Evaluation of soil liquefaction potentials in partially drained conditions. Soil Found. 25(2), 57–72 (1985)

    Article  Google Scholar 

  123. Varley, E., Seymour, B.R.: A method for obtaining exact solutions to partial differential equations with variable coefficients. Stud. Appl. Math. 78, 183–225 (1988)

    Google Scholar 

  124. Verruijt, A.: Elastic storage of aquifers. In: De Wiest, R.J.M. (ed.) Flow Through Porous Media, pp. 331–376. Academic Press, New York (1969)

    Google Scholar 

  125. Wright, S.G., Dunham, R.S.: Bottom stability under wave induced loading. In: Proceedings of the 4th Annual Offshore Technology Conference, pp. 853–862 (1972)

    Google Scholar 

  126. Yamamoto, T.: Wave induced instability seabed. In: Proceedings A.S.C.E. Special Conference, Coastal Sediments’77, pp. 898–913 (1977)

    Google Scholar 

  127. Yamamoto, T.: Wave-induced pore pressures and effective stresses in inhomogeneous seabed foundations. Ocean Eng. 8, 1–16 (1981)

    Article  Google Scholar 

  128. Yamamoto, T.: Non-linear mechanics of ocean wave interactions with sediment beds. Appl. Ocean Res. 4(2), 99–106 (1982)

    Article  Google Scholar 

  129. Yamamoto, T.: On the response of a Coulomb-damped poro-plastic bed to water waves. Mar. Geotechnol. 5(2), 93–130 (1983)

    Article  Google Scholar 

  130. Yamamoto, T., Koning, H., Sellmeijer, H., Hijum, E.V.: On the response of a poro-elastic bed to water waves. J. Fluid Mech. 87(1), 193–206 (1978)

    Article  Google Scholar 

  131. Yamamoto, T., Takahashi, S.: Wave damping by soil motion. J. Waterw. Port Coast. Ocean Eng. 111(1), 62–77 (1985)

    Article  Google Scholar 

  132. Yamamoto, T., Trevorrow, M.: Experimental verifications of bottom shear modulus profiler (BSMP) method. In: Proceedings of the International Conference on Geotechnical Engineering for Coastal Development—Theory and Practice on Soft Ground (Geot-Coastal 91), vol. 1, pp. 123–128 (1991)

    Google Scholar 

  133. Yang, Q.S., Poorooshasb, H.B.: Seabed response to wave loading. In: Proceedings of the Seventh, International Offshore and Polar Engineering Conference, vol. 1, pp. 689–695 (1997). 1997

    Google Scholar 

  134. Yuhi, M., Ishida, H.: Theoretical analysis of the response of a cross-anisotropic seabed to ocean surface waves. In: Proceeding of Japanese Society of Civil Engineering (JSCE), vol. 572, pp. 49–61 (1997)

    Google Scholar 

  135. Yuhi, M., Ishida, H.: Analytical solution for wave-induced seabed response in a soil-water two-phase mixture. Coast. Eng. Res. J. 40(4), 367–381 (1998)

    Article  Google Scholar 

  136. Yuhi, M., Ishida, H.: Simplified solutions for wave-induced response of anisotropic seabed. J. Waterw. Port Coast. Ocean Eng. 128(1), 46–50 (2002)

    Article  Google Scholar 

  137. Zen, K., Umehara, Y., Finn, W.D.L.: A case study of the wave-induced liquefaction of sand layers under damaged breakwater. In: Proceeding 3rd Canadian Conference on Marine Geotechnical Engineering, pp. 505–520 (1985)

    Google Scholar 

  138. Zen, K., Yamazaki, H.: Mechanism of wave-induced liquefaction and densification in seabed. Soil Found. 30(4), 90–104 (1990)

    Article  Google Scholar 

  139. Zen, K., Yamazaki, H.: Oscillatory pore pressure and liquefaction in seabed induced by ocean waves. Soil Found. 30(4), 147–161 (1990)

    Article  Google Scholar 

  140. Zen, K., Yamazaki, H.: Field observation and analysis of wave-induced liquefaction in seabed. Soil Found. 31(4), 161–179 (1991)

    Article  Google Scholar 

  141. Zienkiewicz, O.C., Chang, C.T., Bettess, P.: Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Géotechnique 30(4), 385–395 (1980)

    Article  Google Scholar 

  142. Zienkiewicz, O.C., Scott, F.C.: On the principle of repeatability and its application in analysis of turbine and pump impellers. Int. J. Numer. Methods Eng. 9, 445–452 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Shanghai Jiao Tong University Press and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeng, DS. (2013). Recent Advances. In: Porous Models for Wave-seabed Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33593-8_2

Download citation

Publish with us

Policies and ethics