Skip to main content

Navigated Interventions: Techniques and Indications

  • Chapter
  • First Online:
CT- and MR-Guided Interventions in Radiology
  • 1944 Accesses

Abstract

Computer-assisted navigated interventions gain increasing importance in interventional radiology. Using frameless stereotactic navigation systems, the interventionalist can navigate a pointer and other instruments on multiplanar reconstructed images in real time. Sophisticated preoperative planning and simulation permits arbitrarily angulated guided puncturing through adjustable rigid aiming devices (Bale et al. 1997, 2000, 2001, 2006; Bale and Widmann 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bale R, Widmann G (2007) Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 16:16196–16204

    Article  Google Scholar 

  • Bale RJ, Vogele M, Martin A et al (1997) VBH head holder to improve frameless stereotactic brachytherapy of cranial tumors. Comput Aided Surg 2:286–291

    Article  PubMed  CAS  Google Scholar 

  • Bale RJ, Vogele M, Rieger M et al (1999) A new vacuum device for extremity immobilization. AJR Am J Roentgenol 172:1093–1094

    Article  PubMed  CAS  Google Scholar 

  • Bale RJ, Freysinger W, Gunkel AR et al (2000) Head and neck tumors: fractionated frameless stereotactic interstitial brachytherapy-initial experience. Radiology 214:591–595

    PubMed  CAS  Google Scholar 

  • Bale RJ, Hoser C, Rosenberger R et al (2001) Osteochondral lesions of the talus: computer-assisted retrograde drilling-feasibility and accuracy in initial experiences. Radiology 218:278–282

    PubMed  CAS  Google Scholar 

  • Bale RJ, Lottersberger C, Vogele M et al (2002) A novel vacuum device for extremity immobilisation during digital angiography: preliminary clinical experiences. Eur Radiol 12:2890–2894

    PubMed  CAS  Google Scholar 

  • Bale RJ, Laimer I, Martin A et al (2006) Frameless stereotactic cannulation of the foramen ovale for ablative treatment of trigeminal neuralgia. Neurosurgery 59:ONS394–ONS401

    Article  PubMed  Google Scholar 

  • Bale RJ, Kovacs P, Dolati B, Hinterleithner C, Rosenberger RE (2008) Stereotactic CT-guided percutaneous stabilization of posterior pelvic ring fractures: a preclinical cadaver study. J Vasc Interv Radiol 19:1093–1098

    Article  PubMed  Google Scholar 

  • Bale R, Widmann G, Stoffner DI (2010) Stereotaxy: breaking the limits of current radiofrequency ablation techniques. Eur J Radiol 75:32–36

    Article  PubMed  Google Scholar 

  • Bale R, Widmann G, Haidu M (2011) Stereotactic radiofrequency ablation. Cardiovasc Intervent Radiol 34:852–856

    Article  PubMed  Google Scholar 

  • Banovac F, Tang J, Xu S et al (2005) Precision targeting of liver lesions using a novel electromagnetic navigation device in physiologic phantom and swine. Med Phys 32:2698–2705

    Article  PubMed  Google Scholar 

  • Birkfellner W, Watzinger F, Wanschitz F et al (1998) Systematic distortions in magnetic position digitizers. Med Phys 25:2242–2248

    Article  PubMed  CAS  Google Scholar 

  • Bucholz RD, Ho HW, Rubin JP (1993) Variables affecting the accuracy of stereotactic localization using computerized tomography. J Neurosurg 79:667–673

    Article  PubMed  CAS  Google Scholar 

  • Caversaccio M, Bachler R, Ladrach K et al (1999) The “Bernese” frameless optical computer aided surgery system. Comput Aided Surg 4:328–334

    PubMed  CAS  Google Scholar 

  • Dorward NL, Alberti O, Dijkstra A et al (1997) Clinical introduction of an adjustable rigid instrument holder for frameless stereotactic interventions. Comput Aided Surg 2:180–185

    PubMed  CAS  Google Scholar 

  • Dorward NL, Alberti O, Palmer JD et al (1999) Accuracy of true frameless stereotaxy: in vivo measurement and laboratory phantom studies. Technical note. J Neurosurg 90:160–168

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17:694–702

    Article  PubMed  CAS  Google Scholar 

  • Gazelle GS, Goldberg SN, Solbiati L et al (2000) Tumor ablation with radio-frequency energy. Radiology 217:633–646

    PubMed  CAS  Google Scholar 

  • Germano IM, Queenan JV (1998) Clinical experience with intracranial brain needle biopsy using frameless surgical navigation. Comput Aided Surg 3:33–39

    Article  PubMed  CAS  Google Scholar 

  • Goldberg SN, Gazelle GS, Compton CC et al (2000) Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer 88:2452–2463

    Article  PubMed  CAS  Google Scholar 

  • Gralla J, Nimsky C, Buchfelder M et al (2003) Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results. Zentralbl Neurochir 64:166–170

    Article  PubMed  CAS  Google Scholar 

  • Grunert P, Espinosa J, Busert C et al (2002) Stereotactic biopsies guided by an optical navigation system: technique and clinical experience. Minim Invasive Neurosurg 45:11–15

    Article  PubMed  CAS  Google Scholar 

  • Holloway KL, Gaede SE, Starr PA et al (2005) Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 103:404–413

    Article  PubMed  Google Scholar 

  • Holzknecht N, Helmberger T, Schoepf UJ et al (2001) Evaluation of an electromagnetic virtual target system (CT-guide) for CT-guided interventions. Rofo 173: 12–618

    Article  PubMed  CAS  Google Scholar 

  • Hummel JB, Bax MR, Figl ML et al (2005) Design and application of an assessment protocol for electromagnetic tracking systems. Med Phys 32:2371–2379

    Article  PubMed  Google Scholar 

  • Hummel J, Figl M, Birkfellner W et al (2006) Evaluation of a new electromagnetic tracking system using a standardized assessment protocol. Phys Med Biol 51: N205–N210

    Article  PubMed  CAS  Google Scholar 

  • Jacob AL, Messmer P, Kaim A et al (2000) A whole-body registration-free navigation system for image-guided surgery and interventional radiology. Invest Radiol 35:279–288

    Article  PubMed  CAS  Google Scholar 

  • Khadem R, Yeh CC, Sadeghi-Tehrani M et al (2000) Comparative tracking error analysis of five different optical tracking systems. Comput Aided Surg 5: 98–107

    Article  PubMed  CAS  Google Scholar 

  • Khan MF, Dogan S, Maataoui A et al (2006) Navigation-based needle puncture of a cadaver using a hybrid tracking navigational system. Invest Radiol 41:713–720

    Article  PubMed  Google Scholar 

  • Maciunas RJ, Galloway RL Jr, Latimer JW (1994) The application accuracy of stereotactic frames. Neurosurgery 35:682–694

    Article  PubMed  CAS  Google Scholar 

  • Marmulla R, Hilbert M, Niederdellmann H (1998) Intraoperative precision of mechanical, electromagnetic, infrared and laser-guided navigation systems in computer-assisted surgery. Mund Kiefer Gesichtschir 2(Suppl 1):S145–S148

    Article  CAS  Google Scholar 

  • Mascott CR (2005) Comparison of magnetic tracking and optical tracking by simultaneous use of two independent frameless stereotactic systems. Neurosurgery 57:295–301

    Article  PubMed  Google Scholar 

  • Mascott CR, Sol JC, Bousquet P et al (2006) Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration. Neurosurgery 59:ONS146–ONS156

    Article  PubMed  Google Scholar 

  • Maurer CR Jr, Maciunas RJ, Fitzpatrick JM (1998) Registration of head CT images to physical space using a weighted combination of points and surfaces. IEEE Trans Med Imaging 17:753–761

    Article  PubMed  Google Scholar 

  • Nagel M, Schmidt G, Petzold R et al (2005) A navigation system for minimally invasive CT-guided interventions. Med Image Comput Comput Assist Interv 8:33–40

    PubMed  Google Scholar 

  • Ortler M, Trinka E, Dobesberger J et al (2010) Integration of multimodality imaging and surgical navigation in the management of patients with refractory epilepsy. A pilot study using a new minimally invasive reference and head-fixation system. Acta Neurochir (Wien) 152:365–378

    Article  CAS  Google Scholar 

  • Paleologos TS, Dorward NL, Wadley JP et al (2001) Clinical validation of true frameless stereotactic biopsy: analysis of the first 125 consecutive cases. Neurosurgery 49:830–835

    PubMed  CAS  Google Scholar 

  • Patel N, Sandeman D (1997) A simple trajectory guidance device that assists freehand and interactive image guided biopsy of small deep intracranial targets. Comput Aided Surg 2:186–192

    PubMed  CAS  Google Scholar 

  • Penzkofer T, Bruners P, Isfort P et al (2011) Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim Invasive Ther Allied Technol 20:226–233

    Article  PubMed  Google Scholar 

  • Schiemann M, Killmann R, Kleen M et al (2004) Vascular guide wire navigation with a magnetic guidance system: experimental results in a phantom. Radiology 232:475–481

    Article  PubMed  Google Scholar 

  • Wagner A, Schicho K, Birkfellner W et al (2002) Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems. Med Phys 29:905–912

    Article  PubMed  CAS  Google Scholar 

  • West J, Fitzpatrick JM, Wang MY et al (1999) Retrospective intermodality registration techniques for images of the head: surface-based versus volume-based. IEEE Trans Med Imaging 18:144–150

    Article  PubMed  CAS  Google Scholar 

  • Widmann G, Widmann R, Widmann E, Jaschke W, Bale RJ (2005) In vitro accuracy of a novel registration and targeting technique for image guided template production. Clin Oral Implants Res 16:502–508

    Article  PubMed  Google Scholar 

  • Widmann G, Widmann R, Widmann E et al (2007) Use of surgical navigation systems for CT-guided template production. Int J Oral Maxillofac Implants 22:72–78

    PubMed  Google Scholar 

  • Widmann G, Bodner G, Bale R (2009a) Tumour ablation: technical aspects. Cancer Imaging 2(9 Spec No A):S63–S67

    Article  Google Scholar 

  • Widmann G, Stoffner R, Bale R (2009b) Errors and error management in image-guided craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:701–715

    Article  PubMed  Google Scholar 

  • Widmann G, Widmann R, Stoffner R et al (2009c) Multipurpose navigation system based concept for surgical template production. J Oral Maxillofac Surg 67:1113–1120

    Article  PubMed  Google Scholar 

  • Widmann G, Pototschnig C, Bale R (2010a) Three-dimensionally navigated image-guided radiofrequency ablation in the head and neck. J Vasc Interv Radiol 21:165–166

    Article  PubMed  Google Scholar 

  • Widmann G, Schullian P, Haidu M et al (2010b) Respiratory motion control for stereotactic and robotic liver interventions. Int J Med Robot 6:343–349

    Article  PubMed  Google Scholar 

  • Widmann G, Keiler M, Zangerl A et al (2010c) Computer-assisted surgery in the edentulous jaw based on three fixed intraoral reference points. J Oral Maxillofac Surg 68:1140–1147

    Article  PubMed  Google Scholar 

  • Widmann G, Zangerl A, Keiler M et al (2010d) Flapless implant surgery in the edentulous jaw based on three fixed intraoral reference points and image-guided ­surgical templates: accuracy in human cadavers. Clin Oral Implants Res 21:835–841

    PubMed  Google Scholar 

  • Widmann G, Schullian P, Haidu M et al (2011) Targeting accuracy of CT-guided stereotaxy for radiofrequency ablation of liver tumours. Minim Invasive Ther Allied Technol 20:218–225

    Article  PubMed  Google Scholar 

  • Wood BJ, Zhang H, Durrani A et al (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16:493–505

    Article  PubMed  Google Scholar 

  • Wood BJ, Locklin JK, Viswanathan A et al (2007) Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol 18:9–24

    Article  PubMed  Google Scholar 

  • Zhang H, Banovac F, Lin R et al (2006a) Electromagnetic tracking for abdominal interventions in computer aided surgery. Comput Aided Surg 11:127–136

    PubMed  Google Scholar 

  • Zhang X, Zheng G, Langlotz F et al (2006b) Assessment of spline-based 2D-3D registration for image-guided spine surgery. Minim Invasive Ther Allied Technol 15:193–199

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlig Widmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Widmann, G., Bale, R. (2013). Navigated Interventions: Techniques and Indications. In: Mahnken, A., Wilhelm, K., Ricke, J. (eds) CT- and MR-Guided Interventions in Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33581-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33581-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33580-8

  • Online ISBN: 978-3-642-33581-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics