Skip to main content

Assembly and Function of the Botulinum Neurotoxin Progenitor Complex

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 364))

Abstract

Botulinum neurotoxins (BoNTs) are among the most poisonous substances known to man, but paradoxically, BoNT-containing medicines and cosmetics have been used with great success in the clinic. Accidental BoNT poisoning mainly occurs through oral ingestion of food contaminated with Clostridium botulinum. BoNTs are naturally produced in the form of progenitor toxin complexes (PTCs), which are high molecular weight (up to ~900 kDa) multiprotein complexes composed of BoNT and several non-toxic neurotoxin-associated proteins (NAPs). NAPs protect the inherently fragile BoNTs against the hostile environment of the gastrointestinal (GI) tract and help BoNTs pass through the intestinal epithelial barrier before they are released into the general circulation. These events are essential for ingested BoNTs to gain access to motoneurons, where they inhibit neurotransmitter release and cause muscle paralysis. In this review, we discuss the structural basis for assembly of NAPs and BoNT into the PTC that protects BoNT and facilitate its delivery into the bloodstream.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PTC:

Progenitor toxin complex

NTNHA:

Non-toxic non-hemagglutinin protein

HA:

Hemagglutinin

NAP:

Neurotoxin-associated protein

References

  • Arndt JW, Gu J, Jaroszewski L, Schwarzenbacher R, Hanson MA, Lebeda FJ, Stevens RC (2005) The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring beta-trefoil fold in the progenitor toxin complex. J Mol Biol 346:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Baldwin MR, Kim JJ, Barbieri JT (2007) Botulinum neurotoxin B-host receptor recognition: it takes two receptors to tango. Nat Struct Mol Biol 14:9–10

    Article  PubMed  CAS  Google Scholar 

  • Binz T, Bade S, Rummel A, Kollewe A, Alves J (2002) Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. Biochemistry 41:1717–1723

    Article  PubMed  CAS  Google Scholar 

  • Binz T, Kurazono H, Wille M, Frevert J, Wernars K, Niemann H (1990) The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. J Biol Chem 265:9153–9158

    PubMed  CAS  Google Scholar 

  • Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:1584–1595

    Article  PubMed  CAS  Google Scholar 

  • Binz T (2012) Clostridial Neurotoxin Light Chains: Devices for SNARE Cleavage Mediated Blockade of Neurotransmission 10.1007/978-3-642-33570-9_7

  • Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, Sudhof TC, Niemann H, Jahn R (1993a) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365:160–163

    Article  PubMed  CAS  Google Scholar 

  • Blasi J, Chapman ER, Yamasaki S, Binz T, Niemann H, Jahn R (1993b) Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 12:4821–4828

    PubMed  CAS  Google Scholar 

  • Boroff DA, Townend R, Fleck U, DasGupta BR (1966) Ultracentrifugal analysis of the crystalline toxin and isolated fractions of Clostridium botulinum type A. J Biol Chem 241:5165–5167

    PubMed  CAS  Google Scholar 

  • Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432:925–929

    Article  PubMed  CAS  Google Scholar 

  • Brunger AT, Breidenbach MA, Jin R, Fischer A, Santos JS, Montal M (2007) Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. PLoS Pathog 3:e113

    Article  Google Scholar 

  • Burkard F, Chen F, Kuziemko GM, Stevens RC (1997) Electron density projection map of the botulinum neurotoxin 900-kilodalton complex by electron crystallography. J Struct Biol 120:78–84

    Article  PubMed  CAS  Google Scholar 

  • Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444:1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Kuziemko GM, Amersdorfer P, Wong C, Marks JD, Stevens RC (1997) Antibody mapping to domains of botulinum neurotoxin serotype A in the complexed and uncomplexed forms. Infect Immun 65:1626–1630

    PubMed  CAS  Google Scholar 

  • Cheng LW, Onisko B, Johnson EA, Reader JR, Griffey SM, Larson AE, Tepp WH, Stanker LH, Brandon DL, Carter JM (2008) Effects of purification on the bioavailability of botulinum neurotoxin type A. Toxicology 249:123–129

    Article  PubMed  CAS  Google Scholar 

  • Coffield JA, Bakry N, Zhang RD, Carlson J, Gomella LG, Simpson LL (1997) In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches. J Pharmacol Exp Ther 280:1489–1498

    PubMed  CAS  Google Scholar 

  • Collins MD, East AK (1998) Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol 84:5–17

    Article  PubMed  CAS  Google Scholar 

  • Conway JO, Sherwood LJ, Collazo MT, Garza JA, Hayhurst A (2010) Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. PLoS ONE 5:e8818

    Article  PubMed  Google Scholar 

  • DasGupta BR, Boroff DA (1968) Separation of toxin and hemagglutinin from crystalline toxin of Clostridium botulinum type A by anion exchange chromatography and determination of their dimensions by gel filtration. J Biol Chem 243:1065–1072

    PubMed  CAS  Google Scholar 

  • de Paiva A, Poulain B, Lawrence GW, Shone CC, Tauc L, Dolly JO (1993) A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J Biol Chem 268:20838–20844

    PubMed  Google Scholar 

  • Dong J, Thompson AA, Fan Y, Lou J, Conrad F, Ho M, Pires-Alves M, Wilson BA, Stevens RC, Marks JD (2010) A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region. J Mol Biol 397:1106–1118

    Article  PubMed  CAS  Google Scholar 

  • East AK, Bhandari M, Hielm S, Collins MD (1998) Analysis of the botulinum neurotoxin type F gene clusters in proteolytic and nonproteolytic Clostridium botulinum and Clostridium barati. Curr Microbiol 37:262–268

    Article  PubMed  CAS  Google Scholar 

  • East AK, Collins MD (1994) Conserved structure of genes encoding components of botulinum neurotoxin complex M and the sequence of the gene coding for the non-toxic component in nonproteolytic Clostridium botulinum type F. Curr Microbiol 29:69–77

    Article  PubMed  CAS  Google Scholar 

  • Eisele KH, Fink K, Vey M, Taylor HV (2011) Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 57:555–565

    Article  PubMed  CAS  Google Scholar 

  • Eswaramoorthy S, Kumaran D, Keller J, Swaminathan S (2004) Role of metals in the biological activity of Clostridium botulinum neurotoxins. Biochemistry 43:2209–2216

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Garcia-Rodriguez C, Geren I, Lou J, Marks JD, Nakagawa T, Montal M (2008) Molecular architecture of botulinum neurotoxin E revealed by single particle electron microscopy. J Biol Chem 283:3997–4003

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Montal M (2006) Characterization of Clostridial botulinum neurotoxin channels in neuroblastoma cells. Neurotox Res 9:93–100

    Article  CAS  Google Scholar 

  • Fischer A, Montal M (2007a) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282:29604–29611

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Montal M (2007b) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci U S A 104:10447–10452

    Article  PubMed  CAS  Google Scholar 

  • Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35:2630–2636

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Chen S, Baldwin MR, Boldt GE, Crawford A, Janda KD, Barbieri JT, Kim JJ (2006) Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate. Biochemistry 45:8903–8911

    Article  PubMed  CAS  Google Scholar 

  • Fujii N, Kimura K, Yokosawa N, Yashiki T, Tsuzuki K, Oguma K (1993) The complete nucleotide sequence of the gene encoding the non-toxic component of Clostridium botulinum type E progenitor toxin. J Gen Microbiol 139:79–86

    Article  PubMed  CAS  Google Scholar 

  • Fujinaga Y, Inoue K, Watanabe S, Yokota K, Hirai Y, Nagamachi E, Oguma K (1997) The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143(Pt 12):3841–3847

    Article  PubMed  CAS  Google Scholar 

  • Fujinaga Y, Inoue K, Watarai S, Sakaguchi Y, Arimitsu H, Lee JC, Jin Y, Matsumura T, Kabumoto Y, Watanabe T, Ohyama T, Nishikawa A, Oguma K (2004) Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes. Microbiology 150:1529–1538

    Article  PubMed  CAS  Google Scholar 

  • Fujinaga Y, Matsumura T, Jin Y, Takegahara Y, Sugawara Y (2009) A novel function of botulinum toxin-associated proteins: HA proteins disrupt intestinal epithelial barrier to increase toxin absorption. Toxicon 54:583–586

    Article  PubMed  CAS  Google Scholar 

  • Fujinaga Y, Matsumura T, Sugawara Y (2012) Uptake of botulinum neurotoxin in the intestine. 10.1007/978-3-642-33570-9_3

  • Fujita R, Fujinaga Y, Inoue K, Nakajima H, Kumon H, Oguma K (1995) Molecular characterization of two forms of nontoxic-nonhemagglutinin components of Clostridium botulinum type A progenitor toxins. FEBS Lett 376:41–44

    Article  PubMed  CAS  Google Scholar 

  • Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K, Shoemaker CB, Rummel A, Jin R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335:977–981

    Article  PubMed  CAS  Google Scholar 

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Watanabe T, Suzuki T, Yamano A, Oikawa T, Sato Y, Kouguchi H, Yoneyama T, Niwa K, Ikeda T, Ohyama T (2007) A novel subunit structure of clostridium botulinum serotype D toxin complex with three extended arms. J Biol Chem 282:24777–24783

    Article  PubMed  CAS  Google Scholar 

  • Hatheway CL (1990) Toxigenic clostridia. Clin Microbiol Rev 3:66–98

    PubMed  CAS  Google Scholar 

  • Hill KK, Xie G, Foley BT, Smith TJ, Munk AC, Bruce D, Smith LA, Brettin TS, Detter JC (2009) Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol 7:66

    Article  PubMed  Google Scholar 

  • Hill K & Smith TJ (2012) Genetic Diversity Within Clostridium Botulinum Serotypes, Botulinum Neurotoxin Gene Clusters and Toxin Subtypes 10.1007/978-3-642-33570-9_1

  • Inoue K, Fujinaga Y, Honke K, Arimitsu H, Mahmut N, Sakaguchi Y, Ohyama T, Watanabe T, Inoue K, Oguma K (2001) Clostridium botulinum type A haemagglutinin-positive progenitor toxin (HA(+)-PTX) binds to oligosaccharides containing Gal beta1-4GlcNAc through one subcomponent of haemagglutinin (HA1). Microbiology 147:811–819

    PubMed  CAS  Google Scholar 

  • Inoue K, Fujinaga Y, Watanabe T, Ohyama T, Takeshi K, Moriishi K, Nakajima H, Inoue K, Oguma K (1996) Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 64:1589–1594

    PubMed  CAS  Google Scholar 

  • Inoue K, Sobhany M, Transue TR, Oguma K, Pedersen LC, Negishi M (2003) Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum. Microbiology 149:3361–3370

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Sagane Y, Miyata K, Inui K, Matsuo T, Horiuchi R, Ikeda T, Suzuki T, Hasegawa K, Kouguchi H, Oguma K, Niwa K, Ohyama T, Watanabe T (2011) HA-33 facilitates transport of the serotype D botulinum toxin across a rat intestinal epithelial cell monolayer. FEMS Immunol Med Microbiol: 1–9

    Google Scholar 

  • Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444:1092–1095

    Article  PubMed  CAS  Google Scholar 

  • Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43:526–532

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Eguchi H, Ookawara T, Fujiwara N, Yasuda J, Nakagawa K, Yamamura T, Suzuki K (2005) Clostridium botulinum type A progenitor toxin binds to Intestine-407 cells via N-acetyllactosamine moiety. Biochem Biophys Res Commun 331:571–576

    Article  PubMed  CAS  Google Scholar 

  • Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13–18

    Article  PubMed  CAS  Google Scholar 

  • Korotkov KV, Pardon E, Steyaert J, Hol WG (2009) Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17:255–265

    Article  PubMed  CAS  Google Scholar 

  • Kouguchi H, Watanabe T, Sagane Y, Sunagawa H, Ohyama T (2002) In vitro reconstitution of the Clostridium botulinum type D progenitor toxin. J Biol Chem 277:2650–2656

    Article  PubMed  CAS  Google Scholar 

  • Krebs KM, Lebeda FJ (2008) Comparison of the structural features of botulinum neurotoxin and NTNH, a non-toxic accessory protein of the progenitor complex. Botulinum J 1:116–134

    Article  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386:233–245

    Article  PubMed  CAS  Google Scholar 

  • Kurazono H, Mochida S, Binz T, Eisel U, Quanz M, Grebenstein O, Wernars K, Poulain B, Tauc L, Niemann H (1992) Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum neurotoxin type A. J Biol Chem 267:14721–14729

    PubMed  CAS  Google Scholar 

  • Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291:1091–1104

    Article  PubMed  CAS  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    Article  PubMed  CAS  Google Scholar 

  • Lam AY, Pardon E, Korotkov KV, Hol WG, Steyaert J (2009) Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. J Struct Biol 166:8–15

    Article  PubMed  CAS  Google Scholar 

  • Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704–721

    Article  PubMed  CAS  Google Scholar 

  • Li L, Binz T, Niemann H, Singh BR (2000) Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry 39:2399–2405

    Article  PubMed  CAS  Google Scholar 

  • Lietzow MA, Gielow ET, Le D, Zhang J, Verhagen MF (2008) Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denaturing capillary electrophoresis. Protein J 27:420–425

    Article  PubMed  CAS  Google Scholar 

  • Lin G, Tepp WH, Pier CL, Jacobson MJ, Johnson EA (2010) Expression of the Clostridium botulinum A2 neurotoxin gene cluster proteins and characterization of the A2 complex. Appl Environ Microbiol 76:40–47

    Article  PubMed  CAS  Google Scholar 

  • Masuyer G, Thiyagarajan N, James PL, Marks PM, Chaddock JA, Acharya KR (2009) Crystal structure of a catalytically active, non-toxic endopeptidase derivative of Clostridium botulinum toxin A. Biochem Biophys Res Commun 381:50–53

    Article  PubMed  CAS  Google Scholar 

  • Matsumura T, Jin Y, Kabumoto Y, Takegahara Y, Oguma K, Lencer WI, Fujinaga Y (2008) The HA proteins of botulinum toxin disrupt intestinal epithelial intercellular junctions to increase toxin absorption. Cell Microbiol 10:355–364

    PubMed  CAS  Google Scholar 

  • Miyata K, Yoneyama T, Suzuki T, Kouguchi H, Inui K, Niwa K, Watanabe T, Ohyama T (2009) Expression and stability of the non-toxic component of the botulinum toxin complex. Biochem Biophys Res Commun 384:126–130

    Article  PubMed  CAS  Google Scholar 

  • Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617

    Article  PubMed  CAS  Google Scholar 

  • Montecucco C (1986) How do tetanus and botulinum neurotoxins bind to neuronal membranes? Trends Biochem Sci 11:314–317

    Article  CAS  Google Scholar 

  • Montecucco C, Rossetto O, Schiavo G (2004) Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 12:442–446

    Article  PubMed  CAS  Google Scholar 

  • Montecucco C, Schiavo G (1995) Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 28:423–472

    Article  PubMed  CAS  Google Scholar 

  • Mueller DS, Kampmann T, Yennamalli R, Young PR, Kobe B, Mark AE (2008) Histidine protonation and the activation of viral fusion proteins. Biochem Soc Trans 36:43–45

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee J, Tremblay JM, Leysath CE, Ofori K, Baldwin K, Feng X, Bedenice D, Webb RP, Wright PM, Smith LA, Tzipori S, Shoemaker CB (2012) A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model. PLoS ONE 7:e29941

    Article  PubMed  CAS  Google Scholar 

  • Mutoh S, Kouguchi H, Sagane Y, Suzuki T, Hasegawa K, Watanabe T, Ohyama T (2003) Complete subunit structure of the Clostridium botulinum type D toxin complex via intermediate assembly with non-toxic components. Biochemistry 42:10991–10997

    Article  PubMed  CAS  Google Scholar 

  • Muyldermans S, Cambillau C, Wyns L (2001) Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem Sci 26:230–235

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Kotani M, Tonozuka T, Ide A, Oguma K, Nishikawa A (2009) Crystal structure of the HA3 subcomponent of Clostridium botulinum type C progenitor toxin. J Mol Biol 385:1193–1206

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Takada N, Tonozuka T, Sakano Y, Oguma K, Nishikawa A (2007) Binding properties of Clostridium botulinum type C progenitor toxin to mucins. Biochim Biophys Acta 1770:551–555

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Tonozuka T, Ide A, Yuzawa T, Oguma K, Nishikawa A (2008) Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin. J Mol Biol 376:854–867

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Tonozuka T, Ito S, Takeda Y, Sato R, Matsuo I, Ito Y, Oguma K, Nishikawa A (2011) Molecular diversity of the two sugar-binding sites of the beta-trefoil lectin HA33/C (HA1) from Clostridium botulinum type C neurotoxin. Arch Biochem Biophys 512:69–77

    Article  PubMed  CAS  Google Scholar 

  • Niwa K, Koyama K, Inoue S, Suzuki T, Hasegawa K, Watanabe T, Ikeda T, Ohyama T (2007) Role of non-toxic components of serotype D botulinum toxin complex in permeation through a Caco-2 cell monolayer, a model for intestinal epithelium. FEMS Immunol Med Microbiol 49:346–352

    Article  PubMed  CAS  Google Scholar 

  • Notermans S, Dufrenne J, Kozaki S (1980) Experimental botulism in Pekin ducks. Avian Dis 24:658–664

    Article  PubMed  CAS  Google Scholar 

  • Ohishi I, Sugii S, Sakaguchi G (1977) Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect Immun 16:107–109

    PubMed  CAS  Google Scholar 

  • Pace CN, Grimsley GR, Scholtz JM (2009) Protein ionizable groups: pK values and their contribution to protein stability and solubility. J Biol Chem 284:13285–13289

    Article  PubMed  CAS  Google Scholar 

  • Perez JC, Groisman EA (2007) Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol Microbiol 63:283–293

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Hafner K, Mahrhold S, Darashchonak N, Holt M, Jahn R, Beermann S, Karnath T, Bigalke H, Binz T (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110:1942–1954

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51:631–643

    Article  PubMed  CAS  Google Scholar 

  • Rummel A (2012) Double Receptor Anchorage of Botulinum Neurotoxins Accounts for Their Exquisite Neurospecificity 10.1007/978-3-642-33570-9_4

  • Sagane Y, Watanabe T, Kouguchi H, Sunagawa H, Obata S, Oguma K, Ohyama T (2002) Spontaneous nicking in the nontoxic-nonhemagglutinin component of the Clostridium botulinum toxin complex. Biochem Biophys Res Commun 292:434–440

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    PubMed  CAS  Google Scholar 

  • Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270:10566–10570

    Article  PubMed  CAS  Google Scholar 

  • Shone CC, Hambleton P, Melling J (1985) Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity. Eur J Biochem 151:75–82

    Article  PubMed  CAS  Google Scholar 

  • Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4:e1000129

    Article  PubMed  Google Scholar 

  • Stirling PC, Bakhoum SF, Feigl AB, Leroux MR (2006) Convergent evolution of clamp-like binding sites in diverse chaperones. Nat Struct Mol Biol 13:865–870

    Article  PubMed  CAS  Google Scholar 

  • Stroffekova K, Kupert EY, Malinowska DH, Cuppoletti J (1998) Identification of the pH sensor and activation by chemical modification of the ClC-2G Cl- channel. Am J Physiol 275:C1113–C1123

    PubMed  CAS  Google Scholar 

  • Sugawara Y, Matsumura T, Takegahara Y, Jin Y, Tsukasaki Y, Takeichi M, Fujinaga Y (2010) Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Biol 189:691–700

    Article  PubMed  CAS  Google Scholar 

  • Sugii S, Ohishi I, Sakaguchi G (1977) Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes. Infect Immun 16:910–914

    PubMed  CAS  Google Scholar 

  • Sugiyama H (1980) Clostridium botulinum neurotoxin. Microbiol Rev 44:419–448

    PubMed  CAS  Google Scholar 

  • Suzuki T, Watanabe T, Mutoh S, Hasegawa K, Kouguchi H, Sagane Y, Fujinaga Y, Oguma K, Ohyama T (2005) Characterization of the interaction between subunits of the botulinum toxin complex produced by serotype D through tryptic susceptibility of the isolated components and complex forms. Microbiology 151:1475–1483

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7:693–699

    Article  PubMed  CAS  Google Scholar 

  • Tremblay JM, Kuo CL, Abeijon C, Sepulveda J, Oyler G, Hu X, Jin MM, Shoemaker CB (2010) Camelid single domain antibodies (VHHs) as neuronal cell intrabody binding agents and inhibitors of Clostridium botulinum neurotoxin (BoNT) proteases. Toxicon 56:990–998

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan VV, Yoshino K, Jahnz M, Dorries C, Bade S, Nauenburg S, Niemann H, Binz T (1999) Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J Neurochem 72:327–337

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Meng J, Lawrence GW, Zurawski TH, Sasse A, Bodeker MO, Gilmore MA, Fernandez-Salas E, Francis J, Steward LE, Aoki KR, Dolly JO (2008) Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 283:16993–17002

    Article  PubMed  CAS  Google Scholar 

  • Weeks DL, Sachs G (2001) Sites of pH regulation of the urea channel of Helicobacter pylori. Mol Microbiol 40:1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Williamson LC, Halpern JL, Montecucco C, Brown JE, Neale EA (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271:7694–7699

    Article  PubMed  CAS  Google Scholar 

  • Yamashita S, Yoshida H, Uchiyama N, Nakakita Y, Nakakita SI, Tonozuka T, Oguma K, Nishikawa A, Kamitori S (2012) Carbohydrate recognition mechanism of HA70 from Clostridium botulinum deduced from X-ray structures in complexes with sialylated oligosaccharides. FEBS Lett

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH grant 5R01AI091823 to R.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongsheng Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gu, S., Jin, R. (2012). Assembly and Function of the Botulinum Neurotoxin Progenitor Complex. In: Rummel, A., Binz, T. (eds) Botulinum Neurotoxins. Current Topics in Microbiology and Immunology, vol 364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33570-9_2

Download citation

Publish with us

Policies and ethics