Skip to main content

Progress in Cell Based Assays for Botulinum Neurotoxin Detection

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 364))

Abstract

Botulinum neurotoxins (BoNTs) are the most potent human toxins known and the causative agent of botulism, and are widely used as valuable pharmaceuticals. The BoNTs are modular proteins consisting of a heavy chain and a light chain linked by a disulfide bond. Intoxication of neuronal cells by BoNTs is a multi-step process including specific cell binding, endocytosis, conformational change in the endosome, translocation of the enzymatic light chain into the cells cytosol, and SNARE target cleavage. The quantitative and reliable potency determination of fully functional BoNTs produced as active pharmaceutical ingredient (API) requires an assay that considers all steps in the intoxication pathway. The in vivo mouse bioassay has for years been the ‘gold standard’ assay used for this purpose, but it requires the use of large numbers of mice and thus causes associated costs and ethical concerns. Cell-based assays are currently the only in vitro alternative that detect fully functional BoNTs in a single assay and have been utilized for years for research purposes. Within the last 5 years, several cell-based BoNT detection assays have been developed that are able to quantitatively determine BoNT potency with similar or greater sensitivity than the mouse bioassay. These assays now offer an alternative method for BoNT potency determination. Such quantitative and reliable BoNT potency determination is a crucial step in basic research, in the development of pharmaceutical BoNTs, and in the quantitative detection of neutralizing antibodies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

NCB assay:

Neuronal cell-based assay

BoNT:

Botulinum neurotoxins

HC:

Heavy chain

LC:

Light chain

SNAP-25:

Synaptosomal-associated protein 25

VAMP:

Vesicle-associated membrane protein

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

FRET:

Fluorescence resonance energy transfer

FDA:

Food and Drug Administration

SV2:

Synaptic vesicle protein 2

MBA:

Mouse bioassay

NGF:

Nerve growth factor

EB:

Embryoid body

mES cells:

Mouse embryonic stem cells

hiPS cells:

Human induced pluripotent stem cells

ELISA:

Enzyme-linked immunosorbent assay

EDB:

Extensor digitorum brevis

LD50 :

Lethal dose at which 50 % of animals die

U:

Mouse LD50 Unit

EC50 :

Half maximal effective concentration

GT1b:

Trisialoganglioside GT1b

References

  • Adler S, Bicker G, Bigalke H et al (2010) The current scientific and legal status of alternative methods to the LD50 test for botulinum neurotoxin potency testing. The report and recommendations of a ZEBET expert meeting. Altern Lab Anim 38:315–330

    CAS  PubMed  Google Scholar 

  • Akaike N, Ito Y, Shin MC, Nonaka K, Torii Y, Harakawa T, Ginnaga A, Kozaki S, Kaji R (2010) Effects of A2 type botulinum toxin on spontaneous miniature and evoked transmitter release from the rat spinal excitatory and inhibitory synapses. Toxicon 56:1315–1326

    Article  CAS  PubMed  Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV et al (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Benatar MG, Willison HJ, Vincent A (1997) Lack of effect of Miller Fisher sera/plasmas on transmitter release from PC12 cells. J Neuroimmunol 80:1–5

    Article  CAS  PubMed  Google Scholar 

  • Bercsenyi K, Giribaldi F, Schiavo G (2012) The elusive compass of clostridial neurotoxins: deciding when and where to go? doi:10.1007/978-3-642-33570-9_5

  • Bigalke H, Dimpfel W, Habermann E (1978) Suppression of 3H-acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin. Naunyn Schmiedebergs Arch Pharmacol 303:133–138

    Article  CAS  PubMed  Google Scholar 

  • Bigalke H, Dreyer F, Bergey G (1985) Botulinum A neurotoxin inhibits non-cholinergic synaptic transmission in mouse spinal cord neurons in culture. Brain Res 360:318–324

    Article  CAS  PubMed  Google Scholar 

  • Binz T (2012) Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. doi:10.1007/978-3-642-33570-9_7

  • Binz T, Blasi J, Yamasaki S et al (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269:1617–1620

    CAS  PubMed  Google Scholar 

  • Blasi J, Chapman ER, Link E et al (1993a) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365:160–163

    Article  CAS  PubMed  Google Scholar 

  • Blasi J, Chapman ER, Yamasaki S et al (1993b) Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 12:4821–4828

    CAS  PubMed  Google Scholar 

  • Borodic G (2007) Botulinum toxin, immunologic considerations with long-term repeated use, with emphasis on cosmetic applications. Facial Plast Surg Clin North Am 15:11–16

    Article  PubMed  Google Scholar 

  • Borodic GE, Duane D, Pearce B et al (1995) Antibodies to botulinum toxin. Neurology 45:204

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ (1995) Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res 42:674–683

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ, Torricelli JR, Evege EK et al (1993) Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  CAS  PubMed  Google Scholar 

  • Cartee TV, Monheit GD (2011) An overview of botulinum toxins: past, present, and future. Clin Plast Surg 38:409–426

    Article  PubMed  Google Scholar 

  • Conway JO, Sherwood LJ, Collazo MT et al (2010) Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. PLoS ONE 5:e8818

    Article  PubMed  CAS  Google Scholar 

  • Cordivari C, Misra VP, Vincent A et al (2006) Secondary nonresponsiveness to botulinum toxin A in cervical dystonia: the role of electromyogram-guided injections, botulinum toxin A antibody assay, and the extensor digitorum brevis test. Mov Disord 21:1737–1741

    Article  PubMed  Google Scholar 

  • Dong M, Liu H, Tepp WH et al (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19:5226–5237

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Richards DA, Goodnough MC et al (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162:1293–1303

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Tepp WH, Johnson EA et al (2004) Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc Natl Acad Sci U S A 101:14701–14706

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Tepp WH, Liu H et al (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179:1511–1522

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Yeh F, Tepp WH et al (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592–596

    Article  CAS  PubMed  Google Scholar 

  • Dorner MB, Schulz KM, Kull S (2012) Complexity of botulinum neurotoxins: challenges for detection technology. doi:10.1007/978-3-642-33570-9_11

  • Dressler D (2004) Clinical presentation and management of antibody-induced failure of botulinum toxin therapy. Mov Disord 19(Suppl 8):S92–S100

    Article  PubMed  Google Scholar 

  • Dressler D, Benecke R (2007) Pharmacology of therapeutic botulinum toxin preparations. Disabil Rehabil 29:1761–1768

    Article  PubMed  Google Scholar 

  • Dressler D, Bigalke H (2002) Botulinum toxin antibody type A titres after cessation of botulinum toxin therapy. Mov Disord 17:170–173

    Article  PubMed  Google Scholar 

  • Dressler D, Lange M, Bigalke H (2005) Mouse diaphragm assay for detection of antibodies against botulinum toxin type B. Mov Disord 20:1617–1619

    Article  PubMed  Google Scholar 

  • Dressler D, Wohlfahrt K, Meyer-Rogge E et al (2010) Antibody-induced failure of botulinum toxin a therapy in cosmetic indications. Dermatol Surg 36(Suppl 4):2182–2187

    Article  CAS  PubMed  Google Scholar 

  • Duggan MJ, Quinn CP, Chaddock JA et al (2002) Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J Biol Chem 277:34846–34852

    Article  CAS  PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Quatrale R et al (2004) Different types of botulinum toxin in humans. Mov Disord 19(Suppl 8):S53–S59

    Article  PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Rossetto O et al (1998) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256:135–138

    Article  CAS  PubMed  Google Scholar 

  • Evidente VG, Adler CH (2010) An update on the neurologic applications of botulinum toxins. Curr Neurol Neurosci Rep 10:338–344

    Article  CAS  PubMed  Google Scholar 

  • Fischer A (2012) Synchronized chaperone function of botulinum neurotoxin domains mediates light chain translocation into neurons. doi:10.1007/978-3-642-33570-9_6

  • Fischer A, Montal M (2007a) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282:29604–29611

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Montal M (2007b) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci U S A 104:10447–10452

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Nakai Y, Eubanks LM et al (2009) Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci U S A 106:1330–1335

    Article  CAS  PubMed  Google Scholar 

  • Flynn TC (2004) Myobloc. Dermatol Clin 22:207–211 vii

    Article  CAS  PubMed  Google Scholar 

  • Gimenez DF, Gimenez JA (1995) The typing of botulinal neurotoxins. Int J Food Microbiol 27:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hatheway CL (1988) Botulism. In: Balows A, Hausler WH, Ohashi M, Turano MA (eds) Laboratory diagnosis of infectious diseases: principles and practice, vol 1. Springer, New York, pp 111–133

    Google Scholar 

  • Hill KK, Smith TJ (2012) Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. doi:10.1007/978-3-642-33570-9_1

  • Hu BY, Zhang SC (2010) Directed differentiation of neural-stem cells and subtype-specific neurons from hESCs. Methods Mol Biol 636:123–137

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA, Montecucco C (2008) Chapter 11 Botulism. In: Engel Andrew G (ed) Handbook of clinical neurology, vol 91. Elsevier, pp 333–368

    Google Scholar 

  • Jones RG, Alsop TA, Hull R et al (2006) Botulinum type A toxin neutralisation by specific IgG and its fragments: a comparison of mouse systemic toxicity and local flaccid paralysis assays. Toxicon 48:246–254

    Article  CAS  PubMed  Google Scholar 

  • Jones RG, Liu Y, Halls C et al (2011) Release of proteolytic activity following reduction in therapeutic human serum albumin containing products: detection with a new neoepitope endopeptidase immunoassay. J Pharm Biomed Anal 54:74–80

    Article  CAS  PubMed  Google Scholar 

  • Kalb SR, Baudys J, Egan C et al (2011) Different substrate recognition requirements for cleavage of synaptobrevin-2 by Clostridium baratii and Clostridium botulinum type F neurotoxins. Appl Environ Microbiol 77:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43:526–532

    Article  CAS  PubMed  Google Scholar 

  • Keller JE, Neale EA (2001) The role of the synaptic protein snap-25 in the potency of botulinum neurotoxin type A. J Biol Chem 276:13476–13482

    Article  CAS  PubMed  Google Scholar 

  • Keller JE, Neale EA, Oyler G et al (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett 456:137–142

    Article  CAS  PubMed  Google Scholar 

  • Kessler KR, Benecke R (1997) The EBD test–a clinical test for the detection of antibodies to botulinum toxin type A. Mov Disord 12:95–99

    Article  CAS  PubMed  Google Scholar 

  • Kiris E, Nuss JE, Burnett JC et al (2011) Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery. Stem Cell Res 6:195–205

    Article  CAS  PubMed  Google Scholar 

  • Kivell BM, McDonald FJ, Miller JH (2001) Method for serum-free culture of late fetal and early postnatal rat brainstem neurons. Brain Res Brain Res Protoc 6:91–99

    Article  CAS  PubMed  Google Scholar 

  • Kohno K, Kawakami T, Hiruma H (2005) Effects of soluble laminin on organelle transport and neurite growth in cultured mouse dorsal root ganglion neurons: difference between primary neurites and branches. J Cell Physiol 205:253–261

    Article  CAS  PubMed  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC et al (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    Article  CAS  PubMed  Google Scholar 

  • Lee JO, Rosenfield J, Tzipori S et al (2008) M17 human neuroblastoma cell as a cell model for investigation of botulinum neurotoxin A activity and evaluation of BoNT/A specific antibody. The Botulinum J 1:135–152

    Article  Google Scholar 

  • Liu YY, Rigsby P, Sesardic D et al (2012) A functional dual-coated (FDC) microtitre plate method to replace the botulinum toxin LD (50) test. Anal Biochem 425:28–35

    Article  CAS  PubMed  Google Scholar 

  • Macdonald TE, Helma CH, Shou Y et al (2011) Analysis of Clostridium botulinum serotype E strains by using multilocus sequence typing, amplified fragment length polymorphism, variable-number tandem-repeat analysis, and botulinum neurotoxin gene sequencing. Appl Environ Microbiol 77:8625–8634

    Article  CAS  PubMed  Google Scholar 

  • McInnes C, Dolly JO (1990) Ca2(+)-dependent noradrenaline release from permeabilised PC12 cells is blocked by botulinum neurotoxin A or its light chain. FEBS Lett 261:323–326

    Article  CAS  PubMed  Google Scholar 

  • McMahon HT, Nicholls DG (1991) Transmitter glutamate release from isolated nerve terminals: evidence for biphasic release and triggering by localized Ca2+. J Neurochem 56:86–94

    Article  CAS  PubMed  Google Scholar 

  • McNutt P, Celver J, Hamilton T et al (2011) Embryonic stem cell-derived neurons are a novel, highly sensitive tissue culture platform for botulinum research. Biochem Biophys Res Commun 405:85–90

    Article  CAS  PubMed  Google Scholar 

  • Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617

    Article  CAS  PubMed  Google Scholar 

  • Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11:314–317

    Article  CAS  Google Scholar 

  • Muller K, Mix E, Adib Saberi F et al (2009) Prevalence of neutralising antibodies in patients treated with botulinum toxin type A for spasticity. J Neural Transm 116:579–585

    Article  PubMed  CAS  Google Scholar 

  • Nishiki T, Kamata Y, Nemoto Y et al (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269:10498–10503

    CAS  PubMed  Google Scholar 

  • Nuss JE, Ruthel G, Tressler LE et al (2010) Development of cell-based assays to measure botulinum neurotoxin serotype A activity using cleavage-sensitive antibodies. J Biomol Screen 15:42–51

    Article  CAS  PubMed  Google Scholar 

  • Parnas D, Linial M (1995) Cholinergic properties of neurons differentiated from an embryonal carcinoma cell-line (P19). Int J Dev Neurosci 13:767–781

    Article  CAS  PubMed  Google Scholar 

  • Peck MW (2009) Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol 55(183–265):320

    Google Scholar 

  • Pellett S, Du ZW, Pier CL et al (2011) Sensitive and quantitative detection of botulinum neurotoxin in neurons derived from mouse embryonic stem cells. Biochem Biophys Res Commun 404:388–392

    Article  CAS  PubMed  Google Scholar 

  • Pellett S, Tepp WH, Clancy CM et al (2007) A neuronal cell-based botulinum neurotoxin assay for highly sensitive and specific detection of neutralizing serum antibodies. FEBS Lett 581:4803–4808

    Article  CAS  PubMed  Google Scholar 

  • Pellett S, Tepp WH, Toth SI et al (2010) Comparison of the primary rat spinal cord cell (RSC) assay and the mouse bioassay for botulinum neurotoxin type A potency determination. J Pharmacol Toxicol Methods 61:304–310

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Berntsson RP, Tepp WH et al. (2012) Botulinum neurotoxin D-C uses synaptotagmin I/II as receptors and human synaptotagmin II is not an effective receptor for type B, D-C, and G toxins. J Cell Sci. March 2012 epub ahead of print

    Google Scholar 

  • Peng L, Tepp WH, Johnson EA et al (2011) Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 7:e1002008

    Article  CAS  PubMed  Google Scholar 

  • Pickett A, Perrow K (2011) Towards new uses of botulinum toxin as a novel therapeutic tool. Toxins (Basel) 3:63–81

    Article  CAS  Google Scholar 

  • Pier CL, Chen C, Tepp WH et al (2011) Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1. FEBS Lett 585:199–206

    Article  CAS  PubMed  Google Scholar 

  • Purkiss JR, Friis LM, Doward S et al (2001) Clostridium botulinum neurotoxins act with a wide range of potencies on SH-SY5Y human neuroblastoma cells. Neurotoxicology 22:447–453

    Article  CAS  PubMed  Google Scholar 

  • Raphael BH, Choudoir MJ, Luquez C et al (2010) Sequence diversity of genes encoding botulinum neurotoxin type F. Appl Environ Microbiol 76:4805–4812

    Article  CAS  PubMed  Google Scholar 

  • Rasetti-Escargueil C, Jones RG, Liu Y, Sesardic D (2009) Measurement of botulinum types A, B and E neurotoxicity using the phrenic nerve-hemidiaphragm: improved precision with in-bred mice. Toxicon 53:503–511

    Article  CAS  PubMed  Google Scholar 

  • Rasetti-Escargueil C, Machado CB, Preneta-Blanc R et al (2011a) Enhanced sensitivity to botulinum type A neurotoxin of human neuroblastoma SH-SY5Y cells after differentiation into mature neuronal cells. The Botulinum J 2:30–48

    Article  Google Scholar 

  • Rasetti-Escargueil C, Liu Y, Rigsby P et al (2011b) Phrenic nerve-hemidiaphragm as a highly sensitive replacement assay for determination of functional botulinum toxin antibodies. Toxicon 57:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Ravni A, Bourgault S, Lebon A et al (2006) The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. J Neurochem 98:321–329

    Article  CAS  PubMed  Google Scholar 

  • Ray P (1993) Botulinum toxin A inhibits acetylcholine release from cultured neurons in vitro. In Vitro Cell Dev Biol Anim 29A:456–460

    Article  CAS  PubMed  Google Scholar 

  • Rummel A (2012) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. doi:10.1007/978-3-642-33570-9_4

  • Rummel A, Hafner K, Mahrhold S et al (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110:1942–1954

    Article  CAS  PubMed  Google Scholar 

  • Rummel A, Karnath T, Henke T et al (2004) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279:30865–30870

    Article  CAS  PubMed  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H et al (2011) Exchange of the H (CC) domain mediating double receptor recognition improves the pharmacodynamic properties of botulinum neurotoxin. FEBS J 278:4506–4515

    Article  CAS  PubMed  Google Scholar 

  • Saadi RA, He K, Hartnett KA et al (2012) SNARE-dependent upregulation of potassium chloride co-transporter 2 activity after metabotropic zinc receptor activation in rat cortical neurons in vitro. Neuroscience 210:38–46

    Article  CAS  PubMed  Google Scholar 

  • Schantz EJ, Kautter DA (1978) Standardized assay for Clostridium botulinum toxins. J Assoc Official Anal Chem 61:96–99

    CAS  Google Scholar 

  • Schantz EJ, Johnson EA (1992) Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56:80–99

    CAS  PubMed  Google Scholar 

  • Schiavo G, Benfenati F, Poulain B et al (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  CAS  PubMed  Google Scholar 

  • Schiavo G, Malizio C, Trimble WS et al (1994) Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala–Ala peptide bond. J Biol Chem 269:20213–20216

    CAS  PubMed  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    CAS  PubMed  Google Scholar 

  • Schiavo G, Shone CC, Bennett MK et al (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270:10566–10570

    Article  CAS  PubMed  Google Scholar 

  • Schiavo G, Shone CC, Rossetto O et al (1993) Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem 268:11516–11519

    CAS  PubMed  Google Scholar 

  • Sesardic D, Jones RG, Leung T et al (2004) Detection of antibodies against botulinum toxins. Mov Disord 19(Suppl 8):S85–S91

    Article  PubMed  Google Scholar 

  • Sesardic D, Das RG (2007) Alternatives to the LD50 assay for botulinum toxin potency testing: strategies and progress towards refinement, reduction and replacement. Special Issue 14:581–585

    Google Scholar 

  • Sesardic D, Leung T, Gaines Das R (2003) Role for standards in assays of botulinum toxins: international collaborative study of three preparations of botulinum type A toxin. Biologicals 31:265–276

    Article  CAS  PubMed  Google Scholar 

  • Sheridan RE, Smith TJ, Adler M (2005) Primary cell culture for evaluation of botulinum neurotoxin antagonists. Toxicon 45:377–382

    Article  CAS  PubMed  Google Scholar 

  • Shone CC, Melling J (1992) Inhibition of calcium-dependent release of noradrenaline from PC12 cells by botulinum type-A neurotoxin. Long-term effects of the neurotoxin on intact cells. Eur J Biochem 207:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Smith TJ, Lou J, Geren IN et al (2005) Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 73:5450–5457

    Article  CAS  PubMed  Google Scholar 

  • Solomon HM, Lilly T (2001) Clostridium botulinum. In: BAM bacteriological analytical manual U.S. Food and Drug Administration, Chapter 17, 8th edn. Revision A

    Google Scholar 

  • Stahl AM, Ruthel G, Torres-Melendez E et al (2007) Primary cultures of embryonic chicken neurons for sensitive cell-based assay of botulinum neurotoxin: implications for therapeutic discovery. J Biomol Screen 12:370–377

    Article  CAS  PubMed  Google Scholar 

  • Strotmeier J, Willjes G, Binz T et al (2012) Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity. FEBS Lett 586:310–313

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S (2011) Molecular structures and functional relationships in clostridial neurotoxins. FEBS J 278:4467–4485

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Tegenge MA, Bohnel H, Gessler F et al (2012) Neurotransmitter vesicle release from human model neurons (NT2) is sensitive to botulinum toxin A. Cell Mol Neurobiol 32:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Truong DD, Stenner A, Reichel G (2009) Current clinical applications of botulinum toxin. Curr Pharm Des 15:3671–3680

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto K, Arimitsu H, Ochi S et al. (2012) P19 embryonal carcinoma cells exhibit high sensitivity to botulinum type C and D/C mosaic neurotoxins. Microbiol Immunol July 2012 epub ahead of print

    Google Scholar 

  • Uemura M, Refaat MM, Shinoyama M et al (2010) Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell-derived neural precursor cells. J Neurosci Res 88:542–551

    CAS  PubMed  Google Scholar 

  • Ullrich B, Li C, Zhang JZ, McMahon H et al (1994) Functional properties of multiple synaptotagmins in brain. Neuron 13:1281–1291

    Article  CAS  PubMed  Google Scholar 

  • Verderio C, Grumelli C, Raiteri L et al (2007) Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 8:142–153

    Article  CAS  PubMed  Google Scholar 

  • Welch MJ, Purkiss JR, Foster KA (2000) Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 38:245–258

    Article  CAS  PubMed  Google Scholar 

  • Whitemarsh RC, Strathman MJ, Chase LG et al (2012) Novel application of human neurons derived from induced pluripotent stem cells for highly sensitive botulinum neurotoxin detection. Toxicol Sci 126:426–435

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Peljto M (2008) Differentiation of mouse embryonic stem cells to spinal motor neurons. Curr Protoc Stem Cell Biol Chapter 1: Unit 1H.1.1–1H.1.9

    Google Scholar 

  • Wilder-Kofie TD, Luquez C, Adler M et al (2011) An alternative in vivo method to refine the mouse bioassay for botulinum toxin detection. Comp Med 61:235–242

    CAS  PubMed  Google Scholar 

  • Williamson LC, Halpern JL, Montecucco C et al (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271:7694–7699

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Markesbery WR, Lovell MA (2000) Survival of hippocampal and cortical neurons in a mixture of MEM+ and B27-supplemented neurobasal medium. Free Radic Biol Med 28:665–672

    Article  CAS  PubMed  Google Scholar 

  • Yaguchi T, Nishizaki T (2010) Extracellular high K+ stimulates vesicular glutamate release from astrocytes by activating voltage-dependent calcium channels. J Cell Physiol 225:512–518

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S, Baumeister A, Binz T et al (1994) Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem 269:12764–12772

    CAS  PubMed  Google Scholar 

  • Yowler BC, Kensinger RD, Schengrund CL (2002) Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J Biol Chem 277:32815–32819

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC (2006) Neural subtype specification from embryonic stem cells. Brain Pathol 16:132–142

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Wang J, Jacky BPS et al (2010) Cells useful for immuno-based botulinum toxin serotype A activity assays. US-Patent 12/722801 (Allergan Inc) CA, USA

    Google Scholar 

Download references

Acknowledgments

I thank Dr. Eric A Johnson and Regina Whitemarsh for critical review of the manuscript. This work was supported by the National Institutes of Health (contract numbers 1R01AI095274-01A1 and 1R21AI082826-01A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Pellett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pellett, S. (2012). Progress in Cell Based Assays for Botulinum Neurotoxin Detection. In: Rummel, A., Binz, T. (eds) Botulinum Neurotoxins. Current Topics in Microbiology and Immunology, vol 364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33570-9_12

Download citation

Publish with us

Policies and ethics