Automatic Shape Generation Based on Quadratic Four-Dimensional Fractals

  • Adam Goiński
  • Tomasz Zawadzki
  • Sławomir Nikiel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)


Amorphous shapes have always been a challenge to CG modelers. Apparently natural in look, their topology is hard to retrieve manually. Scientists from different backgrounds have tried to understand and model such phenomena. Fractals belong to the most representative solutions, but still are rare in 3D domain. Methods for generation of fractal objects use mainly quaternion representations for nonlinear systems in four dimensions. In such a case advanced volumetric graphics methods need to be applied to convey multidimensional information. In the paper, we propose a simple and effective approach to use four-dimensional escape-time fractals as automated shape generator. We extend general quadratic fractal maps to four dimensions. The algorithm results in diverse aesthetically balanced volumetric shapes delivered in real time on a modern PC.


volumetric graphics volume rendering multi-dimensional fractals procedural modeling shape synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sprott, J.C., Pickover, C.A.: Automatic generation of general quadratic map basins. Computers & Graphics 19(2), 309–313 (1995)CrossRefGoogle Scholar
  2. 2.
    Nikiel, S., Goinski, A.: Generation of volumetric escape time fractals. Computers & Graphics 27(6), 977–982 (2003)CrossRefGoogle Scholar
  3. 3.
    Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: Instant architecture. ACM Transactions on Graphics 22(3), 669–677 (2003)CrossRefGoogle Scholar
  4. 4.
    Parish, Y., Muller, P.: Procedural Modeling of Cities. In: Fiume, E. (ed.) Proceedings (SIGGRAPH 2001), pp. 301–308. ACM Press (2001)Google Scholar
  5. 5.
    Greuter, S., Parker, J., Stewart, N., Leach, G.: Real-time procedural generation of pseudo infinite cities. In: Proceedings (GRAPHITE 2003), pp. 87–95. ACM Press (2003)Google Scholar
  6. 6.
    Peytavie, A., Galin, E., Grosjean, J., Merrilou, S.: Arches: a Framework for Modelling Complex Terrains, Computer Graphics Forum. In: Proceedings EUROGRAPHICS, vol. 28(2), pp. 457–467 (2009)Google Scholar
  7. 7.
    Bouthors, A., Neyret, F.: Modelling Clouds Shape. In: Proceedings EUROGRAPHICS (2004)Google Scholar
  8. 8.
    Schpok, J., Simons, J., Ebert, D., Hansen, C.: A real-time cloud modeling, rendering, and animation system. In: Symposium on Computer Animation 2003, pp. 160–166 (2003)Google Scholar
  9. 9.
    Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T., Nishita, T.: A simple, efficient method for realistic animation of clouds. In: Proceedings of ACM SIGGRAPH 2000, pp. 19–28 (2000)Google Scholar
  10. 10.
    Ebert, D.: Volumetric procedural implicit functions: A cloud is born. In: Whitted, T. (ed.) SIGGRAPH 97 Technical Sketches Program. ACM SIGGRAPH. Addison Wesley (1997) ISBN 0-89791-896-7Google Scholar
  11. 11.
    Elinas, P., Sturzlinger, W.: Real-time rendering of 3D clouds. Journal of Graphics Tools 5(4), 33–45 (2000)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nishita, T., Nakamae, E., Dobashi, Y.: Display of clouds taking into account multiple anisotropic scattering and sky light. In: Rushmeier, H. (ed.) SIGGRAPH 96 Conference Proceedings, ACM SIGGRAPH, pp. 379–386. Addison Wesley (1996)Google Scholar
  13. 13.
    Harris, M.J., Lastra, A.: Real-time cloud rendering. Computer Graphics Forum 20(3), 76–84 (2001)CrossRefGoogle Scholar
  14. 14.
    Gardner, G.Y.: Simulation of natural scenes using textured quadric surfaces. In: Christiansen, H. (ed.) Computer Graphics (SIGGRAPH 1984 Proceedings), vol. 18, pp. 11–20 (1984)Google Scholar
  15. 15.
    Gardner, G.Y.: Visual simulation of clouds. In: Barsky, B.A. (ed.) Computer Graphics (SIGGRAPH 1985 Proceedings), vol. 19, pp. 297–303 (1985)Google Scholar
  16. 16.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants, pp. 101–107. Springer (1991) ISBN 978-0387972978Google Scholar
  17. 17.
    Am Ende, B.A.: 3D Mapping of Underwater Caves. IEEE Computer Graphics Applications 21(2), 14–20 (2001)CrossRefGoogle Scholar
  18. 18.
    Boggus, M., Crawfis, R.: Procedural Creation of 3D Solution Cave Models. In: Proceedings of the 20th IASTED International Conference on Modelling and Simulation, pp. 180–186 (2009)Google Scholar
  19. 19.
    Boggus, M., Crawfis, R.: Explicit Generation of 3D Models of Solution Caves for Virtual Environments. In: Proceedings of the 2009 International Conference on Computer Graphics and Virtual Reality, pp. 85–90 (2009)Google Scholar
  20. 20.
    Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular Automata for Real-time Generation of Infinite Cave Levels. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games (PC Games 2010), pp. 1–4 (2010)Google Scholar
  21. 21.
    Schuchardt, P., Bowman, D.A.: The Benefits of Immersion for Spatial Understanding of Complex Underground Cave Systems. In: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology (VRST 2007), pp. 121–124 (2007)Google Scholar
  22. 22.
    Clempner, J.B., Poznyak, A.S.: Convergence method, properties and computational complexity for Lyapunov games. The International Journal of Applied Mathematics and Computer Science 21(2), 349–361 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Di Trapani, L.J., Inanc, T.: NTGsim, A graphical user interface and a 3D simulator for nonlinear trajectory generation methodology. The International Journal of Applied Mathematics and Computer 20(2), 305–316 (2010)zbMATHGoogle Scholar
  24. 24.
    Norton, A.: Generation and display of geometric fractals in 3D. Computer Graphics (16), 61–67 (1982)Google Scholar
  25. 25.
    Kantor, I.L.: Hypercomplex Numbers. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  26. 26.
    Bedding, S., Briggs, K.: Iteration of quaternion maps. Int.Journal Bif. and Chaos, Appl. Sci. Eng. (5), 887–891 (1995)Google Scholar
  27. 27.
    Holbrook, J.A.R.: Quaternionic Fatou-Julia Sets. Annals Sci. Math., Quebcec (11), 79–94 (1987)Google Scholar
  28. 28.
    Rochon, D.: A generalized Mandelbrot set for bicomplex numbers. Fractals 8(2), 355–368 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adam Goiński
    • 1
  • Tomasz Zawadzki
    • 1
  • Sławomir Nikiel
    • 1
  1. 1.Institute of Control & Computation EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations