Advertisement

Adaptive Structuring Elements Based on Salience Information

  • Vladimir Ćurić
  • Cris L. Luengo Hendriks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)

Abstract

Adaptive structuring elements modify their shape and size according to the image content and may outperform fixed structuring elements. Without any restrictions, they suffer from a high computational complexity, which is often higher than linear with respect to the number of pixels in the image. This paper introduces adaptive structuring elements that have predefined shape, but where the size is adjusted to the local image structures. The size of adaptive structuring elements is determined by the salience map that corresponds to the salience of the edges in the image, which can be computed in linear time. We illustrate the difference between the new adaptive structuring elements and morphological amoebas. As an example of its usefulness, we show how the new adaptive morphological operations can isolate the text in historical documents.

Keywords

Adaptive mathematical morphology adaptive structuring elements spatial variability salience distance transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matheron, G.: Random Sets and Integral Geometry. Willey, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  3. 3.
    Cuisenaire, O.: Locally adaptable mathematical morphology using distance transform. Pattern Recognition 39(3), 405–416 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Shih, F., Cheng, S.: Adaptive mathematical morphology for edge linking. Information Sciences 167, 9–21 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lerallut, R., Decencière, E., Meyer, F.: Image processing using morphological amoebas. In: Proc. of International Symposium on Mathematical Morphology, pp. 13–25 (2005)Google Scholar
  6. 6.
    Grazzini, J., Soille, P.: Edge-preserving smoothing using a similarity measure in adaptive geodesic neighbourhoods. Pattern Recognition 42(10), 2306–2316 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Debayle, J., Pinoli, J.: Spatially Adaptive Morphological Image Filtering using Intrinsic Structuring Elements. Image Analysis and Stereology 24(3), 145–158 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Verdú-Monedero, R., Angulo, J., Serra, J.: Anisotropic morphological filters with spatially-variant structuring elements based on image-dependent gradient fields. IEEE Transactions on Image Processing 20(1), 200–212 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Angulo, J.: Morphological Bilateral Filtering and Spatially-Variant Structuring Functions. In: Proc. of International Symposium on Mathematical Morphology, pp. 212–223 (2011)Google Scholar
  10. 10.
    Dokládal, P., Dokládalová, E.: Grey-Scale Morphology with Spatially-Variant Rectangles in Linear Time. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 674–685. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Bouaynaya, N., Charif-Chefchaouni, M., Schonfeld, D.: Theoretical Foundation of Spatially-Variant Mathematical Morphology Part I: Binary Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(5), 823–836 (2008)CrossRefGoogle Scholar
  12. 12.
    Bouaynaya, N., Schonfeld, D.: Theoretical Foundation of Spatially-Variant Mathematical Morphology Part II: Gray-Level Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(5), 837–850 (2008)CrossRefGoogle Scholar
  13. 13.
    Roerdink, J.: Adaptive and group invariance in mathematical morphology. In: Proc. of IEEE International Conference on Image Processing, pp. 2253–2256 (2009)Google Scholar
  14. 14.
    Maragos, P.A., Vachier, C.: Overview of adaptive morphology: Trends and perspectives. In: Proc. of IEEE Int. Conference on Image Processing, pp. 2241–2244 (2009)Google Scholar
  15. 15.
    Rosin, P., West, G.: Salience distance transforms. CVGIP: Graphical Models and Image Processing 57(6), 483–521 (1995)zbMATHGoogle Scholar
  16. 16.
    Ikonen, L.: Distance Transform on Gray Level Surfaces. PhD thesis, Lappeeranta University of Technology, Lappeeranta, Finland (2006)Google Scholar
  17. 17.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  18. 18.
    Rosin, P.: A simple method for detecting salient regions. Pattern Recognition 42(11), 2363–2371 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Canny, J.: A Computational Approach To Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vladimir Ćurić
    • 1
  • Cris L. Luengo Hendriks
    • 1
  1. 1.Centre for Image AnalysisUppsala University and Swedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations