Syntactic Algorithm of Two-Dimensional Scene Analysis for Unmanned Flying Vehicles

  • Andrzej Bielecki
  • Tomasz Buratowski
  • Piotr Śmigielski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)


In this paper the approach to on-line object recognition for autonomous flying agent is considered. The method is divided into two parts. First the algorithm for scene objects vectorization is introduced. As the second step of the overall method we present the rotation and scale invariant algorithm for vectorized object identification based on syntactic language.


autonomous flying agents vectorization object recognition syntactic languages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bielecka, M., Skomorowski, M., Bielecki, A.: Fuzzy syntactic approach to pattern recognition and scene analysis. In: Proceedings of the 4th International Conference on Informatics in Control, Automatics and Robotics ICINCO 2007, ICSO Intelligent Control Systems and Optimization, Robotics and Automation, vol. 1, pp. 29–35 (2007)Google Scholar
  2. 2.
    Filliat, D., Mayer, J.A.: Map-based navigation in mobile robots. A review of localization strategies. Journal of Cognitive Systems Research 4, 243–283 (2003)CrossRefGoogle Scholar
  3. 3.
    Flasiński, M.: On the parsing of deterministic graph languages for syntactic pattern recognition. Pattern Recognition 26, 1–16 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Katsev, M., Yershova, A., Tovar, B., Ghrist, R., LaValle, S.M.: Mapping and pursuit-evasion strategies for a simple wall-following robot. IEEE Transactions on Robotics 27, 113–128 (2011)CrossRefGoogle Scholar
  5. 5.
    Muratet, L., Doncieux, S., Briere, Y., Meyer, J.A.: A contribution to vision-based autonomous helicopter flight in urban environments. Robotics and Autonomous Systems 50, 195–229 (2005)CrossRefGoogle Scholar
  6. 6.
    Sinopoli, B., Micheli, M., Donato, G., Koo, T.J.: Vision based navigation for an unmanned aerial vehicle. In: Proceedings of the International Conference on Robotics and Automation ICRA, vol. 2, pp. 1757–1764 (2001)Google Scholar
  7. 7.
    Skomorowski, M.: Use of random graph parsing for scene labeling by probabilistic relaxation. Pattern Recognition Letters 20, 949–956 (1999)CrossRefGoogle Scholar
  8. 8.
    Skomorowski, M.: Syntactic recognition of syntactic patterns by means of random graph parsing. Pattern Recognition Letters 28, 572–581 (2006)CrossRefGoogle Scholar
  9. 9.
    Tadeusiewicz, R.: Vision Systems of Industrial Robots. WNT, Warszawa (1992)Google Scholar
  10. 10.
    Tadeusiewicz, R.: A visual navigation system for a mobile robot with limited computational requirements. Problemy Eksploatacji 4, 205–218 (2008)Google Scholar
  11. 11.
    Tadeusiewicz, R.: Medical Image Understanding Technology. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Tadeusiewicz, R.: Automatic image understanding - a new paradigm for intelligent medical image analysis. Bio-Algorithms and Med-Systems 2(3), 3–9 (2006)Google Scholar
  13. 13.
    Tadeusiewicz, R., Flasiński, M.: Pattern Recognition. Polish Scientific Publishers PWN, Warsaw (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrzej Bielecki
    • 1
  • Tomasz Buratowski
    • 2
  • Piotr Śmigielski
    • 3
  1. 1.Institute of Computer Science, Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Chair of Robotics and Mechatronics, Faculty of Mechanical Engineering and RoboticsAGH University of Science and TechnologyKrakówPoland
  3. 3.Asseco Poland S.A.KrakówPoland

Personalised recommendations