Advertisement

A Curvature Tensor Distance for Mesh Visual Quality Assessment

  • Fakhri Torkhani
  • Kai Wang
  • Jean-Marc Chassery
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)

Abstract

This paper presents a new objective metric for assessing the visual difference between a reference or ‘perfect’ mesh and its distorted version. The proposed metric is based on the measurement of a distance between curvature tensors of the two triangle meshes under comparison. Unlike existing methods, our algorithm uses not only eigenvalues but also eigenvectors of the curvature tensor to derive a perceptually-oriented distance. Our metric also accounts for some important properties of the human visual system. Experimental results show good coherence between the proposed objective metric and subjective assessments.

Keywords

Curvature Tensor Principal Direction Psychometric Function Mean Opinion Score Image Quality Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corsini, M., Larabi, M.C., Lavoué, G., Petřík, O., Váša, L., Wang, K.: Perceptual metrics for static and dynamic triangle meshes. In: Proc. of Eurographics State-of-the-Art Rep., pp. 135–157 (2012)Google Scholar
  2. 2.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graphics Forum 17(2), 167–174 (1998)CrossRefGoogle Scholar
  3. 3.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: measuring errors between surfaces using the Hausdorff distance. In: Proc. of IEEE Int. Conf. on Multimedia & Expo., pp. 705–708 (2002)Google Scholar
  4. 4.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proc. of ACM Siggraph, pp. 279–286 (2000)Google Scholar
  5. 5.
    Corsini, M., Drelie Gelasca, E., Ebrahimi, T., Barni, M.: Watermarked 3-D mesh quality assessment. IEEE Trans. on Multimedia 9(2), 247–256 (2007)CrossRefGoogle Scholar
  6. 6.
    Bian, Z., Hu, S.M., Martin, R.R.: Evaluation for small visual difference between conforming meshes on strain field. Journal of Comput. Sci. and Technol. 24(1), 65–75 (2009)CrossRefGoogle Scholar
  7. 7.
    Lavoué, G., Drelie Gelasca, E., Dupont, F., Baskurt, A., Ebrahimi, T.: Perceptually driven 3D distance metrics with application to watermarking. In: Proc. of SPIE Electronic Imaging, pp. 63120L.1–63120L.12 (2006)Google Scholar
  8. 8.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. on Image Process 13(4), 600–612 (2004)CrossRefGoogle Scholar
  9. 9.
    Lavoué, G.: A multiscale metric for 3D mesh visual quality assessment. Comput. Graphics Forum 30(5), 1427–1437 (2011)CrossRefGoogle Scholar
  10. 10.
    Brady, M., Ponce, J., Yuille, A.L., Asada, H.: Describing surfaces. Comput. Vision, Graphics, and Image Process 32(1), 1–28 (1985)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proc. of ACM Siggraph, pp. 517–526 (2000)Google Scholar
  12. 12.
    Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. on Graphics 22(3), 485–493 (2003)CrossRefGoogle Scholar
  13. 13.
    Cohen-Steiner, D., Morvan, J.M.: Restricted delaunay triangulations and normal cycle. In: Symp. on Computational Geometry, pp. 312–321 (2003)Google Scholar
  14. 14.
    Alliez, P., Tayeb, S., Wormser, C.: 3D fast intersection and distance computation (AABB tree). In: CGAL User and Reference Manual (2012)Google Scholar
  15. 15.
    Li, Q., Wang, Z.: Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE J. Sel. Topics Signal Process. 3(2), 202–211 (2009)CrossRefGoogle Scholar
  16. 16.
    Engeldrum, P.G.: Psychometric Scaling: A Toolkit for Imaging Systems Development. Imcotek Press (2000)Google Scholar
  17. 17.
    Lavoué, G.: A local roughness measure for 3D meshes and its application to visual masking. ACM Trans. on Appl. Perception 5(4), 21:1–21:23 (2009)Google Scholar
  18. 18.
    Silva, S., Santos, B.S., Ferreira, C., Madeira, J.: A perceptual data repository for polygonal meshes. In: Proc. of Int. Conf. In: Visualization, pp. 207–212 (2009)Google Scholar
  19. 19.
    Cho, J.W., Prost, R., Jung, H.Y.: An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms. IEEE Trans. on Signal Process. 55(1), 142–155 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang, K., Lavoué, G., Denis, F., Baskurt, A.: Robust and blind mesh watermarking based on volume moments. Comput. & Graphics 35(1), 1–19 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fakhri Torkhani
    • 1
  • Kai Wang
    • 1
  • Jean-Marc Chassery
    • 1
  1. 1.Gipsa-labCNRS UMR 5216GrenobleFrance

Personalised recommendations