Interactive Browsing of Image Repositories

(Invited Paper)
  • Gerald Schaefer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)


Image collections, both personal and commercial, are growing very rapidly. Consequently, methods for managing large image databases are highly sought after. In this paper, we look at various ways to visualise and interactively browse image collections. In general, we can divide image database visualisation approaches into three categories: mapping-based techniques which typically employ dimensionality reduction algorithms, clustered visualisations which group, often in a hierarchical manner, similar images, and graph-based approaches where links between images are exploited to arrive at an intuitive display of the dataset.

Once displayed, the user should be able to browse through the collection in an interactive, intuitive and efficient manner. Such browsing can be achieved in several ways. Horizontal browsing navigates through images of the same visualisation plane, and includes operations such as panning, zooming, magnification and scaling. In contrast, vertical browsing allows navigation to a different level of a hierarchically organised visualisation.


Image databases image database navigation image browsing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  2. 2.
    Keller, I., Meiers, T., Ellerbrock, T., Sikora, T.: Image browsing with PCA-assisted user-interaction. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 102–108 (2001)Google Scholar
  3. 3.
    Moghaddam, B., Tian, Q., Lesh, N., Shen, C., Huang, T.: Visualization and user-modeling for browsing personal photo libraries. Int. Journal of Computer Vision 56(1/2), 109–130 (2004)CrossRefGoogle Scholar
  4. 4.
    Kruskal, J., Wish, M.: Multidimensional Scaling. Sage (1978)Google Scholar
  5. 5.
    Rubner, Y., Guibas, L.J., Tomasi, C.: The earth movers distance, multi-dimensional scaling, and color-based image retrieval. In: APRA Image Understanding Workshop, pp. 661–668 (1997)Google Scholar
  6. 6.
    Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: Evaluating a visualisation of image similarity as a tool for image browsing. In: IEEE Symposium on Information Visualisation, pp. 36–43 (1999)Google Scholar
  7. 7.
    Schaefer, G., Ruszala, S.: Effective and efficient browsing of image databases. Int. Journal of Imaging Systems and Technology 18, 137–145 (2008)CrossRefGoogle Scholar
  8. 8.
    Schaefer, G., Stich, M.: UCID - An Uncompressed Colour Image Database. In: Storage and Retrieval Methods and Applications for Multimedia 2004. Proceedings of SPIE, vol. 5307, pp. 472–480 (2004)Google Scholar
  9. 9.
    Faloutsos, C., Lin, K.: FastMap: A fast algorithm for indexing, datamining and visualization of traditional and multimedia datasets. In: SIGMOD International Conference on Management of Data, pp. 163–174 (1995)Google Scholar
  10. 10.
    Nakazato, M., Huang, T.: 3D MARS: Immersive virtual reality for content-based image retrieval. In: IEEE International Conference on Multimedia and Expo. (2001)Google Scholar
  11. 11.
    Nguyen, G., Worring, M.: Interactive access to large image collections using similarity based visualization. Journal of Visual Languages and Computing 19, 203–224 (2008)CrossRefGoogle Scholar
  12. 12.
    Laaksonen, J., Koskela, M., Oja, E.: PicSOM – Self-organizing image retrieval with MPEG-7 content descriptors. IEEE Transactions on Neural Networks 13(4), 841–853 (2002)CrossRefGoogle Scholar
  13. 13.
    Deng, D., Zhang, J., Purvis, M.: Visualisation and comparison of image collections based on self-organised maps. In: Australasian Workshop on Data Mining and Web Intelligence, vol. 32, pp. 97–102 (2004)Google Scholar
  14. 14.
    Eidenberger, H.: A video browsing application based on visual MPEG-7 descriptors and self-organising maps. International Journal of Fuzzy Systems 6(3) (2004)Google Scholar
  15. 15.
    Abdel-Mottaleb, M., Krischnamachari, S., Mankovich, N.: Performance evaluation of clustering algorithms for scalable image retrieval. In: IEEE Computer Society Workshop on Empirical Evaluation of Computer Vision Algorithms (1998)Google Scholar
  16. 16.
    Krischnamachari, S., Abdel-Mottaleb, M.: Image browsing using hierarchical clustering. In: IEEE Symposium Computers and Communications, pp. 301–307 (1999)Google Scholar
  17. 17.
    Pecenovic, Z., Do, M., Vetterli, M., Pu, P.: Integrated browsing and searching of large image collections. In: International Conference on Advances in Visual Information Systems, pp. 279–289 (2000)Google Scholar
  18. 18.
    Borth, D., Schulze, C., Ulges, A., Breuel, T.: Navidgator - similarity based browsing for image and video databases. In: 31st Annual German Conference on Advances in Artificial Intelligence, pp. 22–29 (2008)Google Scholar
  19. 19.
    Hilliges, O., Kunath, P., Pryakhin, A., Butz, A., Kriegel, H.: Browsing and sorting digital pictures using automatic image classification and quality analysis. In: International Conference on Human-Computer Interaction, pp. 882–891 (2007)Google Scholar
  20. 20.
    Nakazato, M., Manola, L., Huang, T.: ImageGrouper: A group-oriented user interface for content-based image retrieval and digital image arrangement. Journal of Visual Language and Computing 14(4), 363–386 (2003)CrossRefGoogle Scholar
  21. 21.
    Urban, J., Jose, J.: EGO: A personalised multimedia management and retrieval tool. International Journal of Intelligent Systems 21(7), 725–745 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Graham, A., Garcia-Molina, H., Paepcke, A., Winograd, T.: Time as essence for photo browsing through personal digital libraries. In: 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 326–335. ACM (2002)Google Scholar
  23. 23.
    Platt, J., Czerwinski, M., Field, B.: PhotoTOC: automatic clustering for browsing personal photographs. Technical report, Microsoft Research (2002)Google Scholar
  24. 24.
    Chen, Y., Butz, A.: Photosim: Tightly integrating image analysis into a photo browsing UI. In: International Symposium on Smart Graphics (2008)Google Scholar
  25. 25.
    Gomi, A., Miyazaki, R., Itoh, T., Li, J.: CAT: A hierarchical image browser using a rectangle packing technique. In: 12th International Conference on Information Visualization, pp. 82–87 (2008)Google Scholar
  26. 26.
    Chen, C., Gagaudakis, G., Rosin, P.: Similarity-based image browsing. In: International Conference on Intelligent Information Processing, pp. 206–213 (2000)Google Scholar
  27. 27.
    Heesch, D., Rüger, S.: NNk Networks for Content-Based Image Retrieval. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 253–266. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Dontcheva, M., Agrawala, M., Cohen, M.: Metadata visualization for image browsing. In: 18th Annual ACM Symposium on User Interface Software and Technology (2005)Google Scholar
  29. 29.
    Worring, M., de Rooij, O., van Rijn, T.: Browsing visual collections using graphs. In: International Workshop on Multimedia Information Retrieval, pp. 307–312 (2007)Google Scholar
  30. 30.
    Plant, W., Schaefer, G.: Visualising image databases. In: IEEE Int. Workshop on Multimedia Signal Processing, pp. 1–6 (2009)Google Scholar
  31. 31.
    Plant, W., Schaefer, G.: Visualisation and Browsing of Image Databases. In: Multimedia Analysis, Processing and Communications. SCI, vol. 346, pp. 3–57. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Tian, G., Taylor, D.: Colour image retrieval using virtual reality. In: Proceedings of the IEEE International Conference on Information Visualization, pp. 221–225 (2000)Google Scholar
  33. 33.
    van Liere, R., de Leeuw, W.: Exploration of large image collections using virtual reality devices. In: Workshop on New Paradigms in Information Visualization and Manipulation, Held in Conjunction with the Eighth ACM International Conference on Information and Knowledge Management, pp. 83–86. ACM (1999)Google Scholar
  34. 34.
    Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: Does organisation by similarity assist image browsing? In: SIGCHI Conference on Human Factors in Computing Systems, pp. 190–197. ACM (2001)Google Scholar
  35. 35.
    Bederson, B.: Quantum treemaps and bubblemaps for a zoomable image browser. In: Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, pp. 71–80 (2001)Google Scholar
  36. 36.
    Liu, H., Xie, X., Tang, X., Li, Z.W., Ma, W.Y.: Effective browsing of web image search results. In: 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 84–90 (2004)Google Scholar
  37. 37.
    Porta, M.: New visualization modes for effective image presentation. International Journal of Image and Graphics 9(1), 27–49 (2009)CrossRefGoogle Scholar
  38. 38.
    Platt, J.: AutoAlbum: Clustering digital photographs using probalistic model mergining. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 96–100. IEEE (2000)Google Scholar
  39. 39.
    Hilliges, O., Baur, D., Butz, A.: Photohelix: Browsing, sorting and sharing digital photo collections. In: 2nd IEEE Tabletop Workshop on Horizontal Interactive Human-Computer Systems, pp. 87–94 (2007)Google Scholar
  40. 40.
    Plant, W., Schaefer, G.: Navigation and browsing of image databases. In: Int. Conference on Soft Computing and Pattern Recognition, pp. 750–755 (2009)Google Scholar
  41. 41.
    Schaefer, G., Ruszala, S.: Image Database Navigation: A Globe-Al Approach. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 279–286. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  42. 42.
    Schaefer, G., Ruszala, S.: Hierarchical Image Database Navigation on a Hue Sphere. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 814–823. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  43. 43.
    Schaefer, G.: A next generation browsing environment for large image repositories. Multimedia Tools and Applications 47(1), 105–120 (2010)CrossRefGoogle Scholar
  44. 44.
    Schaefer, G., Stuttard, M.: An on-line tool for browsing large image repositories. In: Int. Conference on Information Retrieval and Knowledge Management, pp. 102–106 (2010)Google Scholar
  45. 45.
    Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: Evaluating a visualisation of image similarity as a tool for image browsing. In: IEEE Symposium on Information Visualization, pp. 36–43 (1999)Google Scholar
  46. 46.
    Schaefer, G., Fox, M., Plant, W., Stuttard, M.: Truly interactive approaches to browsing image databases. In: 7th Int. Conference on Signal-Image Technology and Internet-based Systems (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gerald Schaefer
    • 1
  1. 1.Department of Computer ScienceLoughborough UniversityLoughboroughUK

Personalised recommendations