Discrete Geometric Modeling of Thick Pelvic Organs with a Medial Axis

  • Thierry Bay
  • Romain Raffin
  • Marc Daniel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)


Modeling of soft pelvic organs and their thicknesses is a difficult task, especially when inputs are noisy and scattered. In order to define the geometric step for a global pelvic surgery simulator, we define a new method based only on geometry while considering the problem of error transfer between outer and inner organ surfaces. We compare this approach with a parametric formulation and a mass-spring system.


Offset parametric surface discrete mesh medial axis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bay, T., Chambelland, J.C., Raffin, R., Daniel, M., Bellemare, M.E.: Geometric modeling of pelvic organs. In: IEEE EMBS (ed.) 33rd Annual International Conference of the IEEE EMBS, Boston, USA, pp. 4329–4332 (2011)Google Scholar
  2. 2.
    Bay, T., Chen, Z.W., Raffin, R., Daniel, M., Joli, P., Feng, Z.Q., Bellemare, M.E.: Geometric modeling of pelvic organs with thickness. In: Baskurt, A.M., Sitnik, R. (eds.) Three-Dimensional Image Processing and Applications II, Burlingame, USA, vol. 8290, pp. 82900I–1–82900I–14 (2012)Google Scholar
  3. 3.
    Farouki, R.: The approximation of non-degenerate offset surfaces. In: CAGD, vol. 3, pp. 15–43. Elsevier Science Publishers B. V, Amsterdam (1986)Google Scholar
  4. 4.
    Hoschek, J., Schneider, F.J., Wassum, P.: Optimal approximate conversion of spline surfaces. In: CAGD, vol. 6, pp. 293–306. Elsevier Science Publishers B. V (1989)Google Scholar
  5. 5.
    Kulczycka, M.A., Nachman, L.J.: Qualitative and quantitative comparisons of B-spline offset surface approximation methods. In: CAD, vol. 34, pp. 19–26. Elsevier Science Publishers B. V (2002)Google Scholar
  6. 6.
    Kumar, G.V.V.R., Shastry, K.G., Prakash, B.G.: Computing non-self-intersecting offsets of NURBS surfaces. In: CAD, vol. 34, pp. 209–228 (2002)Google Scholar
  7. 7.
    Provot, X.: Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior. In: Graphics Interface, pp. 147–154 (1996)Google Scholar
  8. 8.
    Schuenke, M., Schulte, E., Schumacher, U., Voll, M., Wesker, K.: Neck and Internal Organs, vol. 20, ch. 2. Thieme Medical Publishers (2010)Google Scholar
  9. 9.
    Seong, J.K., Elber, G., Kim, M.S.: Trimming local and global self-intersections in offset curves/surfaces using distance maps. In: CAD, vol. 38, pp. 183–193. Butterworth-Heinemann, Newton (2006)Google Scholar
  10. 10.
    Shinya, M.: Theories for Mass-Spring Simulation in Computer Graphics: Stability, Costs and Improvements. IEICE - Transactions on Information and Systems E88-D, 767–774 (2005)CrossRefGoogle Scholar
  11. 11.
    Sun, Y.F., Nee, A.Y.C., Lee, K.S.: Modifying free-formed NURBS curves and surfaces for offsetting without local self-intersection. In: CAD, vol. 36, pp. 1161–1169 (2004)Google Scholar
  12. 12.
    Volino, P., Magnenat-Thalmann, N.: Comparing efficiency of integration methods for cloth simulation. In: Ip, H.H.S., Magnenat-Thalmann, N., Lau, R.W.H., Chua, T.S. (eds.) Computer Graphics International Proceedings, pp. 265–274. IEEE Computer Society (2001)Google Scholar
  13. 13.
    Yushkevich, P., Piven, J., Hazlett, H., Smith, R.G., Ho, S., Gee, J., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. In: NeuroImage, vol. 31, pp. 1116–1128. Academic Press Inc Elsevier Science, San Diego (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thierry Bay
    • 1
  • Romain Raffin
    • 1
  • Marc Daniel
    • 1
  1. 1.LSIS UMR 7296Aix-Marseille UniversityMarseille CedexFrance

Personalised recommendations