Skip to main content

Discrete Geometric Modeling of Thick Pelvic Organs with a Medial Axis

  • Conference paper
Computer Vision and Graphics (ICCVG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7594))

Included in the following conference series:

  • 3581 Accesses

Abstract

Modeling of soft pelvic organs and their thicknesses is a difficult task, especially when inputs are noisy and scattered. In order to define the geometric step for a global pelvic surgery simulator, we define a new method based only on geometry while considering the problem of error transfer between outer and inner organ surfaces. We compare this approach with a parametric formulation and a mass-spring system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bay, T., Chambelland, J.C., Raffin, R., Daniel, M., Bellemare, M.E.: Geometric modeling of pelvic organs. In: IEEE EMBS (ed.) 33rd Annual International Conference of the IEEE EMBS, Boston, USA, pp. 4329–4332 (2011)

    Google Scholar 

  2. Bay, T., Chen, Z.W., Raffin, R., Daniel, M., Joli, P., Feng, Z.Q., Bellemare, M.E.: Geometric modeling of pelvic organs with thickness. In: Baskurt, A.M., Sitnik, R. (eds.) Three-Dimensional Image Processing and Applications II, Burlingame, USA, vol. 8290, pp. 82900I–1–82900I–14 (2012)

    Google Scholar 

  3. Farouki, R.: The approximation of non-degenerate offset surfaces. In: CAGD, vol. 3, pp. 15–43. Elsevier Science Publishers B. V, Amsterdam (1986)

    Google Scholar 

  4. Hoschek, J., Schneider, F.J., Wassum, P.: Optimal approximate conversion of spline surfaces. In: CAGD, vol. 6, pp. 293–306. Elsevier Science Publishers B. V (1989)

    Google Scholar 

  5. Kulczycka, M.A., Nachman, L.J.: Qualitative and quantitative comparisons of B-spline offset surface approximation methods. In: CAD, vol. 34, pp. 19–26. Elsevier Science Publishers B. V (2002)

    Google Scholar 

  6. Kumar, G.V.V.R., Shastry, K.G., Prakash, B.G.: Computing non-self-intersecting offsets of NURBS surfaces. In: CAD, vol. 34, pp. 209–228 (2002)

    Google Scholar 

  7. Provot, X.: Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior. In: Graphics Interface, pp. 147–154 (1996)

    Google Scholar 

  8. Schuenke, M., Schulte, E., Schumacher, U., Voll, M., Wesker, K.: Neck and Internal Organs, vol. 20, ch. 2. Thieme Medical Publishers (2010)

    Google Scholar 

  9. Seong, J.K., Elber, G., Kim, M.S.: Trimming local and global self-intersections in offset curves/surfaces using distance maps. In: CAD, vol. 38, pp. 183–193. Butterworth-Heinemann, Newton (2006)

    Google Scholar 

  10. Shinya, M.: Theories for Mass-Spring Simulation in Computer Graphics: Stability, Costs and Improvements. IEICE - Transactions on Information and Systems E88-D, 767–774 (2005)

    Article  Google Scholar 

  11. Sun, Y.F., Nee, A.Y.C., Lee, K.S.: Modifying free-formed NURBS curves and surfaces for offsetting without local self-intersection. In: CAD, vol. 36, pp. 1161–1169 (2004)

    Google Scholar 

  12. Volino, P., Magnenat-Thalmann, N.: Comparing efficiency of integration methods for cloth simulation. In: Ip, H.H.S., Magnenat-Thalmann, N., Lau, R.W.H., Chua, T.S. (eds.) Computer Graphics International Proceedings, pp. 265–274. IEEE Computer Society (2001)

    Google Scholar 

  13. Yushkevich, P., Piven, J., Hazlett, H., Smith, R.G., Ho, S., Gee, J., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. In: NeuroImage, vol. 31, pp. 1116–1128. Academic Press Inc Elsevier Science, San Diego (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bay, T., Raffin, R., Daniel, M. (2012). Discrete Geometric Modeling of Thick Pelvic Organs with a Medial Axis. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science, vol 7594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33564-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33564-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33563-1

  • Online ISBN: 978-3-642-33564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics