Estimation of Electrooculography and Blinking Signals Based on Filter Banks

  • Robert Krupiński
  • Przemysław Mazurek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)


Estimation of electrooculography (EOG) and blinking signals are important for medical applications and non–medical, like computer animation. Both signals are measured together using set of electrodes and the separation of them is necessary. Filter banks based technique for the estimation of EOG and blinking signals is considered. The gradient search allows estimation of the height and width of blinking pulses and the slopes between saccades. Improved detection related to the time domain of saccades is proposed too.


Filter Bank Smooth Pursuit Computer Animation Constant False Alarm Rate Constant False Alarm Rate Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Augustyniak, P.: Przetwarzanie sygnałów elektrodiagnostycznych (textbook in Polish), Uczelniane Wydawnictwa Naukowo–Dydaktyczne AGH, Kraków (2001) ISBN 8388408372Google Scholar
  2. 2.
    Augustyniak, P.: Transformacje falkowe w zastosowanich elektrodiagnostycznych (textbook in Polish), Uczelniane Wydawnictwa Naukowo–Dydaktyczne AGH, Kraków (2003) ISBN 8389388103Google Scholar
  3. 3.
    Bankman, I.N., Thakor, N.V.: Noise reduction in biological step signals: application to saccadic EOG. Med. Biol. Eng. Comput. 28(6), 544–549 (1990) ISSN 0140–0118 CrossRefGoogle Scholar
  4. 4.
    Barea, R., Boquete, L., Mazo, M., López, E.: Wheelchair Guidance Strategies Using EOG. Journal of Intelligent and Robotic Systems 34, 279–299 (2002) ISSN 1573-0409CrossRefzbMATHGoogle Scholar
  5. 5.
    Brown, M., Marmor, M., Vaegan, Zrenner, E., Brigell, M., Bach, M.: ISCEV Standard for Clinical Electro–oculography (EOG). Doc. Ophthalmol. 113, 205–212 (2006) ISSN 1573–2622 CrossRefGoogle Scholar
  6. 6.
    Bulling, A., Roggen, D., Tröster, G.: Wearable EOG goggles: Seamless sensing and context–awareness in everyday environments. Journal of Ambient Intelligence and Smart Environments (JAISE) 1(2), 157–171 (2009), doi:10.3929/ethz-a-005783740, ISSN 1876–1364Google Scholar
  7. 7.
    Denney, D., Denney, C.: The eye blink electro–oculogram. British Journal of Ophthalmology 68, 225–228 (1984) ISSN 1468–2079 CrossRefGoogle Scholar
  8. 8.
    Duchowski, A.: Eye Tracking Methodology: Theory and Practice. Springer (2007) ISBN 1846286085Google Scholar
  9. 9.
    Gu, E., Lee, S.P., Badler, J.B., Badler, N.I.: Eye Movements, Saccades, and Multiparty Conversations. In: Deng, Z., Neumann, U. (eds.) Data–Driven 3D Facial Animation, pp. 79–97. Springer (2008) ISBN 1846289068Google Scholar
  10. 10.
    Juhola, M.: Median filtering is appropriate to signals of saccadic eye movements. Computers in Biology and Medicine 21, 43–49 (1991), doi: 10.1016/0010–4825(91)90034–7, ISSN 0010–4825Google Scholar
  11. 11.
    Khan, J.I., Komogortsev, O.: Perceptual video compression with combined scene analysis and eye–gaze tracking. In: Duchowski, A.T., Vertegaal, R. (eds.) ETRA 2004 – Proceedings of the Eye Tracking Research and Application Symposium, p. 57. ACM Press (2004) ISBN 1581138253Google Scholar
  12. 12.
    Krogh, E.: Normal values in clinical electrooculography. 1. Material, method, methodological investigations and distribution of the potential and time parameters. Acta Ophthalmol. (Copenh) 53(4), 563–575 (1975) ISSN 0001–639XCrossRefGoogle Scholar
  13. 13.
    Krupiński, R., Mazurek, P.: Estimation of Eye Blinking using Biopotentials Measurements for Computer Animation Applications. In: Bolc, L., Kulikowski, J.L., Wojciechowski, K. (eds.) ICCVG 2008. LNCS, vol. 5337, pp. 302–310. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Krupiński, R., Mazurek, P.: Real–Time Low-Latency Estimation of the Blinking and EOG Signals. In: Babamir, S.M. (ed.) Real–Time Systems, Architecture, Scheduling, and Application, pp. 313–334. InTech (2012), doi:10.5772/2344, ISBN 9789535105107Google Scholar
  15. 15.
    Krupiński, R., Mazurek, P.: Optimization–based Technique for Separation and Detection of Saccadic Movements and Eye–blinking in Electrooculography Biosignals. In: Arabnia, H.R., Tran, Q.-N. (eds.) Software Tools and Algorithms for Biological Systems, Advances in Experimental Medicine and Biology, vol. 696, pp. 537–545. Springer (2010), doi: 10.1007/978–1–4419–7046–6_54, ISBN 9781441970459 Google Scholar
  16. 16.
    Krupiński, R., Mazurek, P.: Median Filters Optimization for Electrooculography and Blinking Signal Separation using Synthetic Model. In: 14th IEEE/IFAC International Conference on Methods and Models in Automation and Robotics MMAR 2009, Miedzyzdroje, Poland (2010), doi:10.3182/20090819–3–PL–3002.00057Google Scholar
  17. 17.
    Krupiński, R., Mazurek, P.: Convergence Improving in Evolution–Based Technique for Estimation and Separation of Electrooculography and Blinking Signals. In: Piętka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. AISC, vol. 69, pp. 293–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Krupiński, R., Mazurek, P.: Towards to Real–Time System with Optimization Based Approach for EOG and Blinking Signals Separation for Human Computer Interaction. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010, Part 1. LNCS, vol. 6179, pp. 154–161. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Krupiński, R., Mazurek, P.: Electrooculography Signal Estimation by Using Evolution–Based Technique for Computer Animation Applications. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 139–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Krupiński, R., Mazurek, P.: Sensitivity analysis of eye blinking detection using evolutionary approach. In: Procedings – International Conference on Signals and Electronic Systems, ICSES 2010, Gliwice, Poland, pp. 81–84 (2010) ISBN 142445307Google Scholar
  21. 21.
    Mallat, S.: A wavelet tour of signal processing. Academic Press (1999) , ISBN 012466606xGoogle Scholar
  22. 22.
    Mallat, S.G., Zhang, Z.: Matching Pursuits with Time–Frequency Dictionaries. IEEE Transactions on Signal Processing, 3397–3415 (1993) ISSN 1053–587XGoogle Scholar
  23. 23.
    Martinez, M., Soria, E., Magdalena, R., Serrano, A.J., Martin, J.D., Vila, J.: Comparative study of several Fir Median Hybrid Filters for blink noise removal in Electrooculograms. WSEAS Transactions on Signal Processing 4, 53–59 (2008) ISSN 2224–3488Google Scholar
  24. 24.
    Mazurek, P.: Hierarchical Track–Before–Detect Algorithm for Tracking of Amplitude Modulated Signals. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 3. AISC, vol. 102, pp. 511–518. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Mazurek, P.: Optimization of bayesian Track–Before–Detect algorithms for GPGPUs implementations. Electrical Review 86(7), 187–189 (2010) ISSN 0033–2097Google Scholar
  26. 26.
    Niemenlehto, P.H.: Constant false alarm rate detection of saccadic eye movements in electro–oculography. Computer Methods and Programs in Biomedicine 96(2), 158–171 (2009), doi:10.1016/j.cmpb.2009.04.011, ISSN 0169–2607 CrossRefGoogle Scholar
  27. 27.
    Poole, A., Ball, L.J.: Eye Tracking in Human–Computer Interaction and Usability Research: Current Status and Future Prospects. In: Ghaoui, C. (ed.) Encyclopedia of Human Computer Interaction, pp. 211–219. Idea Group (2005) ISBN 1591405629Google Scholar
  28. 28.
    Reddy, M.S., Narasimha, B., Suresh, E., Rao, K.S.: Analysis of EOG signals using wavelet transform for detecting eye blinks. In: 2010 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–4 (2010), doi:10.1109/WCSP.2010.5633797, ISBN 1424475568Google Scholar
  29. 29.
    Schlgöl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., Pfurtscheller, G.: A fully automated correction method of EOG artifacts in EEG recordings. Clinical Neurophysiology 118, 98–104 (2007), doi:10.1016/j.clinph.2006.09.003, ISSN 1744–4144CrossRefGoogle Scholar
  30. 30.
    Sony Pictures Entertainment, Sony Corporation, Sagar, M., Remington, S.: System and method for tracking facial muscle and eye motion for computer graphics animation, Patent US., International Publication Number WO/2006/039497 A2, April 13 (2006)Google Scholar
  31. 31.
    Thakor, N.V.: Biopotentials and Electrophysiology Measurement. In: Webster, J.G. (ed.) The Measurement, Instrumentation, and Sensors Handbook, vol. 74, CRC Press (1999) ISBN 0849383471Google Scholar
  32. 32.
    Usakli, A.B., Gurkan, S., Aloise, F., Vecchiato, G., Babiloni, F.: On the Use of Electrooculogram for Efficient Human Computer Interfaces. Computational Intelligence and Neuroscience 2010, Article ID 135629, 5 pages (2010), doi: 10.1155/2010/135629, ISSN 1687–5273Google Scholar
  33. 33.
    Warner Brothers: E.O.G Beowulf DVD 2’nd disc, Warner Brothers (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Krupiński
    • 1
  • Przemysław Mazurek
    • 1
  1. 1.Department of Signal Processing and Multimedia EngineeringWest Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations