Advertisement

A New Method to Segment X-Ray Microtomography Images of Lamellar Titanium Alloy Based on Directional Filter Banks and Gray Level Gradient

  • Łukasz Jopek
  • Laurent Babout
  • Marcin Janaszewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)

Abstract

This paper presents a method for segmentation of 2D texture images of titanium alloys. The procedure is fully automated and is able to find and recognize so-called α-colonies from the image. The algorithm combines nonsubsampled directional filter banks (NSDFB) from the contourlet transform and gradient gray-level value to recognize directional orientations of α-colony.

Keywords

Titanium Alloy Local Orientation Laplacian Pyramid Directional Filter Lamellar Coloni 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birosca, S., Buffiere, J.-Y., Garcia-Pastor, F.A., Karadge, M., Babout, L., Preuss, M.: Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction. Acta Materialia 57, 5834 (2009)CrossRefGoogle Scholar
  2. 2.
    Babout, L., Jopek, L., Janaszewski, M., Preuss, M., Buffiere, J.Y.: Towards The Texture Segmentation Of X-Ray Tomography Images Of Lamellar Microstructure In Titanium Based Alloys. In: Babout, L., Nowakowski, J. (eds.) 5th International Symposium on Process Tomography, Zakopane, p. 168 (2008)Google Scholar
  3. 3.
    Theodoridis, S., Koutroumbas, K.: Pattern recognition, 4th edn. Academic Press (2009)Google Scholar
  4. 4.
    Haralick, R.M., Shanmuga, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems Man and Cybernetics SMC3, 610 (1973)CrossRefGoogle Scholar
  5. 5.
    Jeulin, D., Moreaud, M.: Segmentation of 2D and 3D textures from estimates of the local orientation. Image Analysis and Stereology 27, 183 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Vanderesse, N., Maire, E., Darrieulat, M., Montheillet, F., Moreaud, M., Jeulin, D.: Three-dimensional microtomographic study of Widmanstatten microstructures in an alpha/beta titanium alloy. Scripta Materialia 58, 512 (2008)CrossRefGoogle Scholar
  7. 7.
    Do, M.N., Vetterli, M.: The contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing 14, 2091 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Da Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Transactions on Image Processing 15, 3089 (2006)CrossRefGoogle Scholar
  9. 9.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674 (1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    Otsu, A.: Threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man, and Cybernetics 9, 62 (1979)CrossRefGoogle Scholar
  11. 11.
    Lutjering G.: Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Materials Science and Engineering A 1998;243:32.CrossRefGoogle Scholar
  12. 12.
    Lu, Y.M., Do, M.N.: Multidimensional directional filter banks and surfacelets. IEEE Transactions on Image Processing 16, 918 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Łukasz Jopek
    • 1
  • Laurent Babout
    • 1
  • Marcin Janaszewski
    • 1
    • 2
  1. 1.Institute of Applied Computer ScienceLodz University of TechnologyPoland
  2. 2.Division of Expert Systems & Artificial IntelligenceThe College of Computer SciencePoland

Personalised recommendations