Advertisement

Application of a Hybrid Algorithm for Non–humanoid Skeleton Model Estimation from Motion Capture Data

  • Łukasz Janik
  • Karol Jędrasiak
  • Konrad Wojciechowski
  • Andrzej Polański
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)

Abstract

Currently, when Motion Capture being commonly used in gaming and movie industry there is a need of robust, easy and flexible solution to capture motion of non-humanoid characters in order to animate virtual characters in a game or movie. To fill this gap we developed an algorithm which estimates model of skeleton structure of both humanoid and non-humanoid characters. Quality and the possibility of real-life applications of the presented algorithm were experimentally evaluated. During the experiment we estimated the skeleton structure from the markers attached to a dog’s skin. Quality of the resulting model is very promising.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zordan, V.B., Horst, N.C.V.D.: Mapping optical motion capture data to skeletal motion using a physical model. Work (2003)Google Scholar
  2. 2.
    Silaghi, M.-C., Plänkers R., Boulic R., Fua P.: Local and Global Skeleton Fitting Techniques for Optical Motion Capture Skeleton Fitting (1998)Google Scholar
  3. 3.
    Brien, J.F.O., Hodgins, J.K.: Automatic Joint Parameter Estimation from Magnetic Motion Capture Data. Interface, 1–8Google Scholar
  4. 4.
    Aguiar, E.D., Theobalt, C., Seidel H.P.: Automatic Learning of Articulated Skeletons from 3D Marker Trajectories, pp. 485–494 (2006)Google Scholar
  5. 5.
    Gamage, S.S.H.U., Lasenby, J.: New least squares solutions for estimating the average centre of rotation and the axis of rotation. Journal of Biomechanics 35, 87–93 (2002)CrossRefGoogle Scholar
  6. 6.
    Schwartz, M.H., Rozumalski, A.: A new method for estimating joint parameters from motion data. Journal of Biomechanics 38, 107–116 (2005)CrossRefGoogle Scholar
  7. 7.
    Cameron, J., Lasenby, J.: A real-time sequential algorithm for human joint localization. In: ACM SIGGRAPH 2005 Posters on - SIGGRAPH 2005, p. 107 (2005)Google Scholar
  8. 8.
    Yamane, K., Ariki, Y., Hodgins, J.: Animating Non-Humanoid Characters with Human Motion Data (2010)Google Scholar
  9. 9.
    Aleotti, J., Caselli, S., Bracchi, P.G., Gosi, S., Animali, P., Veterinarie, B.: Physically-Based Simulation of the Spine in Dog Walking, pp. 22–26 (2008)Google Scholar
  10. 10.
    Josiński, H., Świtoński, A., Jędrasiak, K., Polański, A., Wojciechowski, K.: Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 131–138. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Świtoński, A., Josiński, H., Jędrasiak, K., Polański, A., Wojciechowski, K.: Classification of Poses and Movement Phases. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 193–200. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Human Motion Lab, Bytom, http://hml.pjwstk.edu.pl/en/ (visited March 1, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Łukasz Janik
    • 1
  • Karol Jędrasiak
    • 2
  • Konrad Wojciechowski
    • 1
    • 3
  • Andrzej Polański
    • 1
    • 3
  1. 1.Institute of Computer ScienceSilesian University of TechnologyGliwicePoland
  2. 2.Institute of Automatic ControlSilesian University of TechnologyGliwicePoland
  3. 3.Polish-Japanese Institute of Information TechnologyBytomPoland

Personalised recommendations